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Abstract—Electric Vehicle (EV) aggregation is a promising
technique to provide secondary frequency regulation (SFR) in
highly renewable energy-penetrated power systems. Equipped
with energy storage devices, EV aggregation can provide reliable
SFR. However, the main challenge is guaranteeing reliable intra-
interval SFR capacities and inter-interval delivery following
the automatic generation control (AGC) signal. Furthermore,
aggregated EV SFR provision will be further complicated by
the EV charging time anxiety because SFR provision might
extend EV’s charging time. This paper proposes a deliverable EV
SFR provision with a charging time-constrained control strategy.
First, a charging time-constrained EV aggregation is proposed
to address the uncertainty of EV capacity based on the state
space model considering the charging time restriction of EV
owners. Second, a real-time economic dispatch and time domain
simulation (RTED-TDS) co-simulation framework is proposed
to verify financial results and the dynamic performance of EV
SFR provision. Last, the proposed charging time-constrained
EV aggregation is validated on IEEE 39-bus system. Results
demonstrate that with the charging time-constrained EV aggre-
gation, the system’s dynamic performance can be improved with
a marginal total cost increase. More importantly, the charging
time constraint can be respected in the proposed EV aggregation
SFR provision control.

Index Terms—Secondary frequency regulation, electric vehicle
aggregation, charging time anxiety, state-space modeling, co-
simulation

NOMENCLATURE

Indices and Sets
ΩB Set of all buses
ΩE Set of all EV aggregators
ΩG Set of all generators
ΩK Set of all branches
ΩT Set of all RTED intervals
Parameters and Variables
∆DU

t /∆DD
t Demanded RegUp/Dn capacity at time t

ρUg /ρ
D
g Ramp-up/-down limit (MW/min) of generator g
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cUe,t/c
D
e,t Price ($/MWh) of EV aggregator g for

RegUp/Dn at time t
cg,t Bid price ($/MWh) of generator g at time t
cUg,t/c

D
g,t Price ($/MWh) of generator g for RegUp/Dn at

time t
Db Load demand (MW) of bus b
P sch
g,t Scheduled power generation (MW) of generator

g at time t
Pl,k Line flow through branch k
RU

e,t/R
D
e,t RegUp/Dn capacity (MW) of EV aggregator e

at time t
RU

g,t/R
D
g,t RegUp/Dn capacity (MW) of generator g at

time t

I. INTRODUCTION

W ITH the increasing integration of variable renewable
energy generation involving solar power and wind

power [1], [2], the stress confronted to system frequency
regulation increases substantially. Secondary frequency reg-
ulation (SFR) is an essential grid service that maintains the
power balance and regulates system frequency to its set
value. To mitigate the system frequency fluctuation caused by
load and variable power generation, the requirements of SFR
increase remarkably. However, given the gradual retirement
of conventional generators, the controllable resources in the
generation mix are continuously decreasing. Therefore, it is
essential to find more alternative energy resources that can
provide reliable SFR for the future power system with high
requirements on frequency regulation. Regarding the SFR,
the ancillary market is usually co-optimized with the energy
market [3], [4] to maintain the inter-interval power balance.
Once the procurement of SFR is settled down, the automatic
generation control (AGC) units are responsible for delivering
the intra-interval regulating power. Variable generation provid-
ing SFR brings the gap between the intra-interval procurement
and the inter-interval delivery. Distributionally robust chance-
constrained modeling is applied to procure intra-interval SFR
capacities and provide deliverable inter-interval SFR services
[5].

Equipped with energy storage devices, Electric Vehicles
(EV) can exchange power with the power grid in two di-
rections to provide vehicle-to-grid services [6], [7]. Since
the capacity of a single EV is limited, aggregation of a
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large population of EVs was developed to provide helpful
frequency service [8], [9]. The challenge of modeling EV
aggregators is the randomness brought by traveling behaviors
and heterogeneous parameters of numerous EVs. The EVs
can be classified based on their SOC level and thus can
be described as a Markov process and modeled as a state
space transition model based on Markov theory [10], [11].
Further, the communication burden is significantly relieved
because the control signal is designed for groups rather than
every EV. However, the studies mentioned above focused on
the continuous manner of AGC control while ignoring the
procurement and delivery process of the SFR [5], [12], [13].
In addition, charging anxiety, or named range anxiety [14],
is a barrier that impedes EVs from participating in the SFR
program because the energy consumed by the SFR will result
in an increased charging time. The issue of time anxiety
is presented and alleviated by considering the patterns of
EV behaviors [15]. Further, the aggregated anxiety concept
is proposed, and a model-free deep reinforcement learning
method is developed to optimize the charging schedule [16].
However, the methods discussed above are toward a single
EV. They are not applicable in EV providing SFR because the
relative significant AGC power signal requires aggregation of
numerous EVs. In summary, the challenges for EV providing
SFR can be summarized as follows:

1) It should be addressed that EV randomness involves not
only the procurement stage but also the delivery stage.

2) The increased charging time should be constrained to
secure the EV owners’ preference.

3) The comprehensive assessment of EV SFR provision in-
volves economic perspective and dynamic performance.

Based on the motivation, this paper proposes an increased
charging time-constrained and deliverable SFR strategy from
EVs. The EV aggregation is modeled based on state space
modeling to effectively estimate the available SFR capacity in
the procurement stage and reliably deliver the AGC signal
in the real-time operation stage. Through the RTED-TDS
co-simulation, the proposed strategy is validated to provide
deliverable SFR service while the increased charging time is
constrained to secure the EV owner’s preference. The major
contributions of this paper are summarized bellows:

1) The problem of EVs participating in the RTED to
provide SFR is decoupled into dispatch modeling and
EV aggregator modeling, where the procured capacity
from EVs can be reliably delivered in the real-time
operation stage.

2) The increased charging time caused by the SFR services
is translated into an action counter and is constrained by
the EV owner’s tolerance.

3) A hybrid OPF structure is proposed in the RTED-
TDS co-simulation for the frequency regulation stud-
ies, where the transition from dispatch to dynamic is
secured, and the modeling complexity is reduced. With
the hybrid OPF structure, the proposed RTED-TDS co-
simulation allows fast prototyping of dispatch-dynamic
co-simulation studies.

4) EV providing deliverable SFR is verified using the pro-

posed RTED-TDS co-simulation. The results show that
the dynamic system performance is improved with the
charging time constraints, and the EV owners’ tolerance
of increased charging time is obeyed.

The rest of this paper is organized as follows: Section
II discusses the charging time-constrained EV aggregator
modeling; Section III presents the problem formulation of EV
providing SFR in the RTED and the framework of RTED-TDS
co-simulation; Section IV verifies the proposed charging time-
constrained EV control strategy using the proposed RTED-
TDS co-simulation on the IEEE 39-bus system; and Section
V concludes this paper.

II. CHARGING TIME CONSTRAINED EV AGGREGATOR
MODELING

This section introduces the charging time-constrained EV
aggregator modeling, including the charging time-constrained
SFR capacities estimation and the EV control for real-time
AGC power delivery.

A. Overview State Space Model Based EV Aggregator

The uncertainties of EVs come from heterogeneous parame-
ters and random traveling behaviors. Various EV models bring
heterogeneous parameters, including capacity Q, charging
efficiency ηc, and discharging efficiency ηd. An EV must plug
in if the SOC level reaches a low level after a trip, which
consists of random traveling behaviors involving arriving time
ts, departure time tf , initial SOC level SOCi, and demanded
SOC level SOCd.

To address the uncertainties of EV for frequency service, a
state space model-based EV aggregator [17] is proposed. The
proposed model applied the Markov state transition method
to predict and control the EV aggregator status. Here we will
overview the philosophy of the state space model-based EV
aggregator.

An EV in a charging station can have three service actions,
i.e., charging status, idle status, and discharging status. The
regulation services can be achieved by switching EVs between
different statuses. Further, categorizing the SOC level of the
EV as Ns levels, an EV can be classified into a specific
status out of 3Ns. After a while, the EV will transit into a
new status. Further, the status of a population of EVs can be
described by a 3Ns×1 vector that each element represents the
proportion of EVs in a situation out of total EVs. Therefore,
an EV population can be described with the state transition
probability as shown in Eqn (1).{

x(k + 1) = A (x(k) +Bu(k) +Cv(k))
y(k) = D (x(k) +Bu(k) +Cv(k))

(1)

where vectors x(k) and x(k + 1) are the 3Ns × 1 current
and next state vectors corresponding to the proportion of each
SOC, respectively, and y(k) is the total output power of the
EV aggregator.

The matrix A is the state transition matrix that can be
obtained by estimation method or analytical method [10].
Matrices B and C are the constant matrices corresponding to
control signals of RegUp and RegDn, as given in Eqns (2)-(3).
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Vectors u and v are the Ns×1 input vectors corresponding to
the proportion of each SOC. A positive element in u means the
EV aggregator will switch part of the EVs in the corresponding
status from charging to idle. In contrast, the negative element
means changing from idle to charging. Similarly, a positive
element in v means part or all of the EVs in the corresponding
state will be switched from idle to discharging. In contrast,
the negative element means changing from discharging to
idle. The computation of u and v is discussed in the next
subsection.

B = [−I1×Ns
, I1×Ns

,01×Ns
]T (2)

C = [01×Ns
,−I1×Ns

, I1×Ns
]T (3)

The matrix D is the constant matrix corresponding to output
power as given in Eqn (4).

D = PaveNe[−11×Ns
,01×Ns

,11×Ns
] (4)

where Ne is the estimated online EV numbers and Pave is the
estimated average charging power of the EVs. Ne and Pave

can be obtained from the EV charging station operation history
data, and the computation error can be bounded by updating
periodically [10].

Further, the upper and lower bound of the EV aggregator
power can be described below:{

y(k) = PaveNe · 13×Ns · x(k)
y(k) = −PaveNe · 13×Ns · x(k) (5)

With the state space modeling, the control signal compu-
tation and communication are significantly simplified because
the EV aggregator deals with a state vector of a large popu-
lation of EVs rather than every single EV.

B. Charging Time Constrained SFR Capacities Estimation

Charging time anxiety of EV has drawn interest [14] [15]
[16], the increased charging time incurred by AGC response
can impede EV owners participating in SFR program. There-
fore, the charging time should be considered to follow the EV
owners’ tolerance of the increased charging time.

When a large EV population is plugged in, there can be a
gap between the demanded energy and the charging energy
during the charging period. As a result, the gap allows EVs
to provide frequency regulation services while not increasing
charging time. For a single EV, Eqn (6) describes the available
energy for frequency support that secures the EV owner’s
charging anxiety, where ttol is the EV owner’s tolerance of
increased charging time.

Ea = (tf − ts + ttol) · Pc − (SOCd − SOCi) ·Q (6)

Given the condition that the departure time tf is challenging
to access in practice, Eqn (6) can be further revised for the
EV aggregator application,

E
′

a = (tstay,ave + ttol) · Pave − (SOCd − SOCi) ·Qave (7)

where tstay,ave is the average time of EV staying connected in
the charging station, and Qave is the average capacity. Similar
to Ne and Pave, tstay,ave and Qave can also be obtained from of
EV charging station operation data.

TABLE I
AGC POWER FROM SINGLE EV

SOC

Pr Status
Charging Idle Discharging

SOC < SOCd 0 Pu 2Pu
SOC ≥ SOCd −Pu 0 Pu

Before integrating the charging time constraints, the as-
sumptions for EV in this study are listed below:

• An EV is set to charging status when it connects to the
charger.

• The EV owner will input the tolerance of charging time
ttol into the charger.

• The EV owner will input the demand SOC level SOCd

to the charger.
• The EV will be switched to idle status if it has been

charged to the demand SOC level.
Since the time length of the AGC interval is fixed, the

response power Pr from a single EV in an AGC interval is
listed in Table I, where Pu = Pave · Tagc is the unit power of
AGC response from one single EV during an AGC interval.
EVs that have not been charged to SOCd are supposed to be
in charging status, and thus the EVs in idle and discharging
status are considered to be providing AGC response power.
Similarly, EVs charged to SOCd are supposed to be idle; thus,
the EVs in charging and discharging status are considered to
provide AGC response power.

Eqn (8) translates the available energy E
′

a into an action
number limit of AGC response. The counter is updated after
every AGC interval by Na = Na + Pr/Punit, and once the
maximum action number is reached, the EV will be out of
SFR service.

Na =
E

′

a

Pave · Tagc
(8)

In this way, the charging time constraints can be realized by
installing a counter locally in each charger, and thus there is
no extra communication burden between the charging center
and the charger. In addition, the increased charging time can
be estimated by the counter as tICT = Na/Na.

Then, the number of online EVs Ne in Eqns (4)-(5) should
be replaced with Nc which represents the number of in-service
EVs.

Further, the charging time-constrained SFR capacities can
be estimated by Eqn (9):{

RU
e = y(k) − y(k)

RD
e = y(k)− y(k)

(9)

where RU
e and RD

e are the estimated RegUp and RegDn
capacities from the EV aggregator, respectively.

C. Real-time AGC Power Delivery Control

EV aggregator participates in the SFR in two stages: dis-
patch in RTED and real-time delivery in real-time. By Eqn
(9), the power grid control center can procure the regulation
capacities from EV as discussed in Section III-A. Then, in the
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real-time operation, the EV aggregator delivers the assigned
signal. The real-time AGC power delivery is illustrated below:

1) The power signals for each status of the EV are computed
as follows:

If Pev − Prt ≥ 0:
ru = min(Pi, Pa)/(Pave ·Nc)

uj = min(ru −∑Ns

h=j+1 xh −∑2Ns

h=j+1+Ns
xh, xj)

rv = max(Pi − Pa, 0)/(Pave ·Nc)

vj = min(rv −
∑Ns

h=j+1(xh+Ns
+ uh), xj+Ns

+ uj)
(10)

Else if Pev − Prt < 0:
rv = max(Pi, Pc)/(Pave ·Nc)

vj = max(rv +
∑j−1

h=1(xh−1+2Ns
), −xj+2Ns

)
ru = min(Pi − Pc, 0)/(Pave ·Nc)

uj = max(ru −∑j
h=1 vh −∑j−1

h=1 uh, −xj+Ns)

(11)

where j = [1, ..., Ns], Pev is the AGC power assigned to
the EV aggregator, and Prt is the AGC power from the EV
aggregator that can be summarized from all the response power
Pr from every single EV as listed in the Table I.

2) The power signals for each EV status are translated into
probabilities as follows:

If Pev − Prt ≥ 0:{
us,j = min(uj/xj , 1)
vs,j = min(vj/(xj+Ns + uj), 1)

(12)

Else if Pev − Prt < 0:{
vs,j = min(−vj/(xj+2Ns + uj), 1)
us,j = min(−uj/xj+Ns − vj , 1)

(13)

3) The probabilities signals from 2) are supplemented with
direction signals as the following:{

us,Ns+1
= vs,Ns+1

= 1, Pev − Prt ≥ 0
us,Ns+1 = vs,Ns+1 = −1, Pev − Prt < 0

(14)

4) The signals from Eqns (12)-(14) are broadcast to all
the EVs, and each single EV will generate a number n
locally, where n ∼ U(0, 1). The action is then determined
by comparing the number n with the corresponding status p:{

switch, n ≥ p
stay, n < p

(15)

The overall workflow of the EV aggregator is summarized
in the Algorithm 1, where N ∈ N0, Ted is the cycle time of
RTED, Tp is the update cycle time of EV aggregator, and Tagc
is the AGC cycle time.

Algorithm 1 EV Aggregator Control
1: Initialize EV aggregator
2: for t in Ttotal
3: if t = N · Ted
4: Estimate SFR capacities with Eqn (9);
5: if t = N · Tp

6: Record x and update A;
7: if t = N · Tagc
8: Compute signals with Eqns (10)-(14);
9: Run Monte Carlo simulation;

10: Switch EVs with Eqn (15);
11: Estimate x and y with Eqn (1);

III. PROCUREMENT AND DELIVERY OF SFR FROM EV
This section introduces the procurement of EV SFR capacity
in the RTED and the RTED-TDS co-simulation framework
used to verify the proposed strategy.

A. Procurement of EV SFR in the RTED
The procurement of EV SFR (RU

e,t and RD
e,t) in the RTED

requires the EV aggregator to provide available SFR capacities
RU

e and RD
e . Given the EV uncertainties are addressed by the

EV aggregator, the RTED can be modeled as below, where
the variables are explained in the Nomenclature:

min
∑
t∈ΩT

(∑
i∈ΩG

(
fg,t

(
P sch
g,t

)
+ cUg,tR

U
g,t + cDg,tR

D
g,t

)
+
∑
i∈ΩE

(
cUe,tR

U
e,t + cDe,tR

D
e,t

))
,∀g ∈ ΩG,∀e ∈ ΩE

(16)

s.t.
∆DU

t =
∑
g∈ΩG

RU
g,t +

∑
e∈ΩE

RU
e,t (17)

∆DD
t =

∑
g∈ΩG

RD
g,t +

∑
e∈ΩE

RD
e,t (18)

∑
b∈ΩB

P sch
g,t −

∑
b∈ΩB

Db = 0 (19)

P sch
g,t +RU

g,t ≤ Pg,∀g ∈ ΩG,∀t ∈ ΩT (20)

Pg ≤ P sch
g,t −RD

g,t,∀g ∈ ΩG,∀t ∈ ΩT (21)

RU
e,t ≤ RU

e ,∀e ∈ ΩE ,∀t ∈ ΩT (22)

RD
e,t ≤ RD

e ,∀e ∈ ΩE ,∀t ∈ ΩT (23)

Pg,t − Pg,t−1 ≤ ρUg ·∆t,∀i ∈ ΩG,∀t ∈ ΩT (24)

Pg,t−1 − Pg,t ≤ ρDg ·∆t,∀i ∈ ΩG,∀t ∈ ΩT (25)

−Pl,k ≤ Pl,k ≤ Pk,∀k ∈ ΩK (26)

The underline and overline of the variables represent the
minimum and maximum, respectively. Superscripts U and D
represents regulation up and down, respectively. Eqn (16) is the
objective function; Eqns (17) - (18) represent the SFR equality
constraints; Eqn (19) represents the power balance; Eqns (20) -
(21) are the minimum/maximum output of conventional units;
Eqns (22) - (23) are the minimum/maximum SFR output of
the EV aggregator, where the RU

e,t and RD
e,t are estimated from

the EV aggregator as described in the previous subsection
II-C; Eqns (24) - (25) are the ramping up/down limits of
conventional units; Eqn (26) represents the line thermal limits.
In the RTED modeling, the decision variables are P sch

g,t , RU
g,t,

RD
g,t, R

U
e,t, R

D
e,t.

Once the SFR capacities are settled down, the participation
factor of each AGC unit is determined by the ratio of its SFR
capacity out of the total demanded SFR capacity, as shown in
Eqns (27)-(28):

βU
g,t = RU

g,t/∆DU
t ,∀g ∈ ΩG ∪ ΩE ,∀t ∈ ΩT (27)

βD
g,t = RD

g,t/∆DD
t ,∀g ∈ ΩG ∪ ΩE ,∀t ∈ ΩT (28)

where the βU
g,t and βD

g,t are the RegUp and RegDn participation
factors of each AGC unit, respectively.
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Fig. 1. Framework of RTED-TDS co-simulation

B. RTED-TDS Co-Simulation Framework

RTED-TDS co-simulation is proposed to simulate the close-
loop AGC control on the area level. The complete frequency
regulation study includes the dispatch results and the dynamic
process. However, there can be a gap when applying the RTED
solution to the TDS. In the RTED-related problem formulation,
DCOPF or the linearized ACOPF can be used, while the
ACOPF is used to initialize the TDS. The gap results from
DCOPF or linearized ACOPF ignoring the voltage range and
the power loss, and then the slack generator will compensate
for the unbalanced power. As a result, the scheduled generation
is broken, and the TDS initialization can fail because of
the divergence of ACOPF. Therefore, to reduce the modeling
complexity and guarantee a smooth transition from dispatch
to dynamic, a DC-AC hybrid OPF structure is proposed.
The design of DCOPF and ACOPF hybrid solutions allows
the extensibility to other dispatch formulations, such as unit
commitment problems. In this design, DCOPF enables rapid
prototyping of dispatch problems, while ACOPF secures the
consistency and initialization of the TDS.

Figure 1 illustrates the proposed framework of RTED-TDS
co-simulation. The framework coordinates four entities: EV
Aggregator is the proposed charging time-constrained EV ag-
gregator, DCOPF stands for the DCOPF-based dispatch simu-
lator, ACOPF represents the ACOPF-based dispatch simulator,
and TDS is the dynamic simulator. The dispatch simulator

involves the DCOPF, and ACOPF implemented with gurobipy
and pandapower [18], respectively. The dynamic simulation is
powered by the open-source simulation engine LTB ADNES
[19], [20]. The data is federated between the EV aggregator
and the dynamic model [21] to capture the EV dynamics. The
four entities are grouped into two modules, i.e., dispatch and
dynamic, and the two modules are iterated to perform the co-
simulation.

The dispatch module contains three steps. First, the available
SFR capacities from the EV aggregator and other AGC units
are reported to the control center. Second, the procurement of
SFR (RU

g,t, RD
g,t, RU

e,t, RD
e,t ) is solved with DCOPF-based

RTED model as described in the section III-A. However,
the setting points P sch

g,t solved from DCOPF can result in a
mismatch in the TDS. Third, therefore, setting points P sch

g,t are
re-solved from ACOPF [22] to secure the initialization of TDS
and the accuracy of the dispatch results. The SFR capacities
and the ramping limits from the first step are reserved by
adjusting the generator limits, as shown in Eqns (29)-(30).

P ′
g = min(Pg −RU

g,t, Pg − ρUg ·∆t) (29)

P
′

g = max(Pg +RD
g,t, Pg + ρUg ·∆t) (30)

Once the dispatch results are settled, the dynamic module
will run the TDS by iterating ANDES and the EV aggregator.
The iteration involves two steps. First, the TDS will run to set
end time t0,0 and generate the AGC signal PAGC

e,t of the EV
aggregator. Second, the EV aggregator responds to the AGC
signal while running to the same end time t0,0. Then the two
steps are iterated till the end of the first dynamic period.

After the dynamic simulation, in the following dispatch
period, the dynamic results will be reported to the control
center as the start point.

The secondary frequency regulation on the area level is im-
plemented in the area-level area control error (ACE) model and
the plant-level automatic generation control (AGC) model. The
area-level ACE represents the system power imbalance and is
defined by North America Electric Reliability Corporation [1].
With the ignorance of interchange (tie line) metering error, it
can be calculated with Eqn (31), where β is the system bias
factor (MW/0.1Hz), f and fn are the measured and nominal
frequency (Hz), respectively, Ptl and P sch

tl are the actual tie
line power (MW) and the scheduled tie line power (MW),
respectively.

ACE = 10β(f − fn) + (Ptl − P sch
tl ) (31)

Taking ACE as the input signal, the plant-level AGC model
will generate auxiliary power signal Paux, as illustrated in
Figure 2, where Kp and Ki are the gain and integral constants
of the PI controller, respectively.

In the power system operation, the SFR mileage calculation
must be necessary. The actual SFR mileages of EV aggregator
are similar to conventional generators, as given in Eqn (32):

Pmile,ied =

Nagc−1∑
iagc=1

|Pagc,iagc+1,ied − Pagc,iagc,ied | (32)
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Fig. 2. AGC unit control

where Pmile,ied is the mileage of EV aggregator of the iedth
RTED interval, Pagc,iagc,ied means the AGC power of EV
aggregator of the iagcth AGC interval in the iedth RTED
interval.

Algorithm 2 RTED-TDS Co-Simulation
1: Initialize EV aggregator, DCOPF, ACOPF, TDS
2: for t in Ttotal
3: if t = N · Ted
4: EV aggregator: estimate SFR with Eqn (9);
5: DCOPF: update info from dynamic;
6: solve RTED with Eqns (16)-(28);
7: ACOPF: resolve with Eqns (29)-(30);
8: TDS: assign schedule results from ACOPF;
9: if t = N · Tagc

10: TDS: assign AGC power;
11: EV Aggregator: run with Algorithm 1;
12: TDS: federate power from EV aggregator;
13: run TDS;
14: compute ACE with Eqn (31);

As illustrated in the Algorithm 2, lines 4-8 are the dispatch
module, and lines 10-14 are the dynamic module. The detailed
data federation is listed below:

1) line 4: the available SFR capacities from EV are com-
puted with Eqn (9) and updated into Eqns (23)-(22) of
TDS;

2) line 6: the previous setting points P t−1
g of Eqns (20)-

(21) of TDS are replaced with actual output power from
TDS results;

3) line 8 the setting points calculated from ACOPF are
updated into corresponding generation units in TDS;

4) line 12: the output power of the EV Aggregator is
updated into the EV dynamic model in TDS.

IV. CASE STUDIES

For verification and demonstration, this section carries out
case studies using the proposed RTED-TDS co-simulation.
The IEEE 39-bus system is modified to demonstrate the
potential of EVs participating in SFR with the proposed
charging time-constrained aggregator modeling.

A. Simulation Settings

All studies are performed on a laptop with Apple M1
processors and 16 GB RAM. The environment of the EV
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Fig. 3. System load curve

aggregation algorithm and the RTED-TDS co-simulation is
deployed in Python 3.9 with ANDES 1.7.

The parameters of EV traveling behaviors are derived from
[10], and the EV aggregator parameters are set as follows:
step size Te = 1s, SOC intervals Ns = 20, and update cycle
Tp = 40s. The step size of the co-simulation is set as Tc = 1s.
The heaviest charging load occurs around 6 PM [17], and
the average SOC level is relatively low than other periods.
Thus, the scenario at 6 PM was chosen to demonstrate the
secured charging demand and the potential of aggregated EVs
participating in SFR provision with charging time constraints.

The load profile is synthesized from PJM load data [23], as
depicted in Figure 3.

B. EV Aggregator Modeling Validation

In the TDS, there are two approaches to modeling EV
dynamics. First, we can model every EV to secure the
simulation accuracy, marked as M1. However, this detailed
modeling in M1 can bring a heavy computation burden when
the EV number is significant. To address this issue, the second
approach is to aggregate the large number of EVs into one
single dynamic EV device, with the output power set to track
the total output power of all EVs, marked as M2. Note that,
with the aggregated M2, although some details, such as each
EV’s SOC and output power, are excluded in the TDS, these
detailed individual EV operational parameters are calculated
in the separated EV aggregator model.

IEEE 39-bus system with EV dynamic devices is used to
validate the accuracy of the M2 model. In the benchmark test,
M1 includes all the 1,000 EV dynamic devices in the TDS,
while M2 only contains one.

The 50s simulation under a generation trip contingency
consumes 3.400s using M1 versus 2.237s using M2. The 1200s
simulation under regular operation consumes 895s using M1
versus 172s using M2. Figure 4 shows the system’s dynamic
responses. From the above results, it can be seen that M2
significantly accelerates the simulation while reserving EV
information with high accuracy. Therefore, M2 is used in this
study to investigate the aggregated EV providing SFR.

C. IEEE 39-Bus System

As visualized using LTB AGVis [24] in Figure 5, IEEE 39-
bus system is modified to include an EV aggregator with a
total of 50,000 EVs.
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(a) EV Aggregator output power under contingency
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(b) System COI frequency under contingency
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(c) EV Aggregator output power under normal operation
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(d) System COI frequency under normal operation
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Fig. 4. Benchmark of EV modeling (a) Total power under normal operation;
(b) System frequency under normal operation; (c) Total power under generator
tripping; (d) System frequency under generator tripping.

TABLE II
IEEE 39-BUS SYSTEM GENERATION PARAMETERS

Unit Cost ($/MW) Pmax
(MW)

Pmin
(MW)

Ramp
(MW/5 min)a b c SFR

G1 0.0140 20 500 0 10.4 4.16 52

G2 0.0200 20 380 0 6.46 2.58 40

G3 0.0194 20 42 0 7.25 2.9 43.33

G4 0.0200 20 380 0 6.52 2.6 36.67

G5 0.0255 20 295 0 5.08 2.0 26.67

G6 0.0210 20 400 0 6.87 2.74 35

G7 0.2300 20 350 0 5.8 2.32 30

G8 0.2220 20 330 0 5.64 2.256 30

G9 0.0150 20 490 0 8.65 3.64 50

G10 0.1400 20 500 0 11 4.4 66.67

The generation parameters [25] are listed in Table II. Refer-
enced from ISO-NE, the mileage price is set as 0.99$/MWh,
and the penalty of extra increased charging time is set as 4$/h.
Three cases listed below are tested to demonstrate the charging
time-constrained EV aggregator modeling:

• Case1: EV not providing SFR
• Case2: EV providing SFR without charging time con-

straints
• Case3: EV providing SFR with charging time constraints
The simulation results are shown and interpreted in the

following subsections.

D. EV Aggregator Results

Figure 6 illustrates the EV Aggregator response of Case2
and Case3. It can be seen that the AGC power assigned to
the EV aggregator is delivered accurately. Noted that, Case1
is not included in Figure 6 because in Case1 EV aggregator

Fig. 5. IEEE 39-bus system topology visualized by LTB AGVis
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(a) Case2 AGC response
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(b) Case3 AGC response
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Fig. 6. EV aggregator response
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(a) Initial SOC level 95-100%
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(b) Initial SOC level 75-80%
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(c) Initial SOC level 55-60%
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(d) Initial SOC level 35-40%
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Fig. 7. 95% confidence interval of ended SOC by a group of initial SOC

has zero control and response signal. This is also the case for
Figure 8.

Figure 7 depicts the 95% confidence interval of the EV SOC
curve by four groups of different initial SOC levels. In Figure
7 (a) and (b), EVs that have been charged to the desired SOC
level are still charged in Case2 and Case3, whereas in Case1,
they remained unchanged. RegDn power is withdrawn from
switching idle EVs to charging, where EVs already charged
to demanded SOC are usually in idle status. When comparing
Figure 7(c) and (d) versus (a) and (b), it can be seen that
the control strategy can secure the charging demand of EVs
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Fig. 8. EV increased charging time

with lower initial SOC levels. Figure 7 shows that the EV
aggregator control strategy can secure EV charging demand.

Figure 8 illustrates the increased charging time of Case2
and Case3. In Figure 8(a), the distribution shape of Case3
is similar to that of the tolerance, while Case2 is out of the
tolerance range. Further, Figure 8(b) shows the ratio of actual
increased charging time to the tolerance for every EV. In Case
2, parts of EVs exceed the tolerance, while the tolerance in
Case 3 limits the increased charging times. In addition, the
scatter plots of increased charging time in Figure 8(c) and (d)
shows again that the tolerance of increased charging time is
violated in Case2 but obeyed in Case3. Figure 8 verifies that
the tolerance of charging time constraints is followed well
using the proposed charging time constraints.

E. System results

Figure 9 depicts the system dynamic results. Figure 9(a)
illustrates the system COI frequency. The spikes of Case2
and Case3 are slightly lower than that in Case1, but Case2
and Case3 are almost overlapped. A similar condition can be
seen from the distribution of the COI frequency as shown in
Figure 9(b). The distribution of the COI frequency deviation is
more concentrated in Case2 and Case3 than in Case1, and the
variation is slightly more concentrated in Case3 than Case2.
Figure 9(c) shows the system ACE. This figure is similar to
Figure 9(a) because the test system is controlled as one area.
Figure 9(d) displays the total AGC input signal of the system,
where the dashed lines represent the SFR capacity. The figure
indicates that the SFR capacities are sufficient in all three
test cases. However, when comparing Case2 and Case3 versus
Case1, it can be found that when EV provides SFR, the system
assigns more RegDn power while less RegUp power.

To be more specific, Table III shows the metrics of system
frequency regulation. When looking at the CPS1 score, it can
be found that EV providing SFR enhances the CPS1 score by
comparing Case2 and Case3 versus Case1. In addition, Case2
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Fig. 9. System dynamic results

TABLE III
SYSTEM FREQUENCY REGULATION METRICS

Case1 Case2 Case3

Freq. Dev. mean [Hz] 0 0.00001 0.00001

Freq. Dev. Std. [Hz] 0.00623 0.00600 0.00603

ACE mean [MW] -0.01521 -0.0522 -0.03912

ACE Std. [MW] 21.77829 20.97947 21.07158

CPS1 score 153.08869 156.70854 156.26189

AGC mileage [MWh] 8277.79918 8940.76994 8864.53066

EV AGC mileage[MWh] 0 2043.33919 1801.41695

and Case3 consumed more AGC mileage than Case1. Compar-
ing Case2 versus Case3 shows that their dynamic performance
is close, although, in Case3, the charging time constraints
slightly degraded the frequency metrics. In summary, Table III
indicates that EV providing SFR slightly enhanced the system
dynamic performance while consuming more AGC mileage.
The charging time constraints of EV aggregators bring a few
impacts on the system’s dynamic performance.

The balancing factors of the three cases are illustrated in
Figure 10. When comparing Case2 and Case3, it can be seen
that the balancing factors of the EV aggregator in Case3
are lower than that of Case2 for both RegUp and RegDn.
This indicated that the charging time constraints resulted in a
decrease in frequency regulation capacities.

Table IV shows the system’s economic results. When com-
paring Case2 and Case3 versus Case1, it can be seen that
EV-providing SFR reduces the system generation cost. This is
caused by the decreased load from the EV charging station
when EV provides SFR. Consistent with AGC mileage in
Table III, EV participating SFR results in higher mileage
payment, and the mileage payment of Case3 is close to Case2.
Regarding the compensation for extra increased charging time,
by comparing Case 2 versus Case 3, it should be noticed
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Fig. 10. System balancing factors

TABLE IV
SYSTEM ECONOMIC RESULTS

Case1 Case2 Case3

Generation cost [$] 133,031.395 132,500.647 132,556.211

Mileage payment [$] 8,195.021 8,851.362 8,775.885

Mileage payment to EV [$] 0 2,022.906 1,783.403

ICT compensation to EV [$] 0 846.1502 0.00087

System total cost [$] 141,226.416 142,198.159 141,332.097

that there is almost zero compensation in Case 3. Further,
the system total cost shows that Case3 is lower than Case2
while close to Case1. Table IV implies that EV aggregators
with charging time constraints have limited impacts on the
system’s economic performance.

In summary, the Case Studies demonstrate the benefits
of charging time-constrained EV aggregation providing SFR.
First, the reliable real-time delivery of the EV aggregator
proving SFR is verified. Second, the system’s dynamic per-
formance is improved with a slightly increased total cost.
Third, the increased charging time is secured with the proposed
charging time constraints.

V. CONCLUSION

In conclusion, this paper proposes an EV charging time-
constrained deliverable SFR provision model. First, the state
space modeling addresses the uncertainties from EV hetero-
geneous parameters and traveling behaviors. The EV owner’s
preference translation respects the charging time into a real-
time AGC activation limiter for the individual EV. Second,
inter-interval SFR reserve procurement is facilitated by esti-
mating EV SFR capacities, and the EV aggregation strategy
reliably delivers real-time intra-interval AGC response. Third,
a hybrid OPF structure is proposed in the RTED-TDS co-
simulation to evaluate the economic and reliability perfor-
mance of EV aggregation’s SFR provision. The proposed

structure can secure the broadcasting dispatch results into the
dynamic simulation, reducing the overall co-simulation model-
ing complexity. Last, the proposed charging time-constrained
EV aggregation is verified using the RTED-TDS co-simulation
framework on IEEE 39-bus system. Results indicate that the
proposed model can improve the system’s dynamic perfor-
mance and respect the EV owners’ tolerance of increased
charging time.
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