

Electric Vehicles Charging Time Constrained Deliverable Secondary Frequency Regulation Provision

Jinning Wang¹, Fangxing Li¹, ¹ The University of Tennessee, Knoxville

MOTIVATION

- EV randomness involves not only the procurement stage but also the delivery stage
- Increased charging time should be constrained to secure the EV owners' preference
- Comprehensive assessment of EV SFR provision involves economic perspective and dynamic performance

CONTRIBUTION

- The problem of EVs participating in the RTED to provide SFR is decoupled into dispatch modeling and EV aggregator modeling
- The increased charging time caused by the SFR services is constrained by the EV owner's tolerance.
- A hybrid OPF structure is proposed in the RTED-TDS co-simulation for the frequency regulation studies
- EV providing deliverable SFR is verified using the proposed RTED-TDS co-simulation

METHODS

Charging time constrained EV aggregation

Algorithm 1 EV Aggregator Control

1: Initialize EV aggregator

2: 1	for t in T_{total}
3:	$\mathbf{if} \ t = N \cdot T_{\mathrm{ed}}$
4:	Estimate SFR capacities with Eqn (9);
5:	if $t = N \cdot T_p$
6:	Record \mathbf{x} and update \mathbf{A} ;
7:	if $t = N \cdot T_{agc}$
8:	Compute signals with Eqns (10)-(14);
9:	Run Monte Carlo simulation;
10:	Switch EVs with Eqn (15);
11:	Estimate x and y with Eqn (1);
Procurement and delivery of EV SFR	
Algorithm 2 RTED-TDS Co-Simulation	
1:	Initialize EV aggregator, DCOPF, ACOPF, TDS
2:	for t in T_{total}
3:	$\mathbf{if} \ t = N \cdot T_{\mathrm{ed}}$
4:	EV aggregator: estimate SFR with Eqn (9);
5:	DCOPF: update info from dynamic;
6:	solve RTED with Eqns (16)-(28);
7:	ACOPF: resolve with Eqns (29)-(30);
8:	TDS: assign schedule results from ACOPF;
9:	if $t = N \cdot T_{agc}$
10:	TDS: assign AGC power;
11:	EV Aggregator: run with Algorithm 1;
12:	TDS: federate power from EV aggregator:
12.	125. Iouolule ponel nom 27 uggregutor,

CASE STUDY

- Case1: EV not providing SFR
- Case2: EV providing SFR without charging time constraints
 Case3: EV providing SFR with charging time constraints

CONCLUSION

.

In conclusion, this paper proposes an EV charging timeconstrained deliverable SFR provision model.

- Charging time constrained EV aggregation based on state space modeling
- Inter-interval SFR reserve procurement and reliable delivery real-time intra-interval AGC response from EV aggregation
- Hybrid OPF structure for RTED-TDS co-simulation to secure the broadcasting dispatch results into the dynamic simulation, reducing the overall co-simulation modeling complexity
- the proposed charging time-constrained EV aggregation is verified using the RTED-TDS co-simulation framework on IEEE 39-bus system

