

DLMP of Competitive Markets in Active Distribution Networks: Models, Solutions, Applications, and Visions

Xiaofei Wang¹, Fangxing Li¹, Linquan Bai², Xin Fang³ ¹ The University of Tennessee, Knoxville² The University of North Carolina at Charlotte ³ National Renewable Energy Laboratory

Background

- Traditionally, distribution systems are unidirectionally structured and operate with uniform electricity prices across ulletall system nodes.
- The adoption of distributed energy resources (DERs) propels a shift from passive to active distribution network ullet(ADN) operations.
- Distribution-level or local markets have been proposed to optimally coordinate these DERs in recent years. ullet
- Distribution locational marginal price (DLMP) has been proposed as a promising price. lacksquare

Power system transition

Pool-based market architecture

P2P market architecture

Modeling details and comparisons

Refs.	Power losses	Congestio n	Voltage	Renewabl e energy uncertaint y	Demand uncertainty	Phases	Transforme r degradation	Active power	Reactive power	Reserve
[8]	\checkmark	\checkmark	\checkmark			1		\checkmark	\checkmark	
[30]	\checkmark		\checkmark			1		\checkmark	\checkmark	
[86]		\checkmark				1		\checkmark		
[87]		\checkmark				1		\checkmark		
[88]	\checkmark	\checkmark				1		\checkmark		
[33]	\checkmark	\checkmark	\checkmark			1		\checkmark	\checkmark	
[62]		\checkmark		\checkmark	\checkmark	1		\checkmark		\checkmark
[50]	\checkmark	\checkmark	\checkmark	\checkmark		1		\checkmark	\checkmark	\checkmark
[51]			\checkmark	\checkmark		1		\checkmark	\checkmark	\checkmark
[35]	\checkmark		\checkmark			3		\checkmark	\checkmark	
[36]	\checkmark		\checkmark			3		\checkmark	\checkmark	
[37]	\checkmark					3		\checkmark	\checkmark	
[63]	\checkmark	\checkmark	\checkmark			1	\checkmark	\checkmark	\checkmark	
[89]	\checkmark		\checkmark			1		\checkmark	\checkmark	
[90]	\checkmark		\checkmark			1		\checkmark	\checkmark	\checkmark

Different relaxation methods

Categories	Specific methods	Refs.		
	DCOPF	[86][87]		
	Linearized Distflow	[8][65] [67][74]		
	Polygonal approximation	[8][50]		
Linearization	Modified DistFlow	[64]		
	LPF-D, LF-D	[30][36][68]		
	Taylor approximation	[69][70][71]		
	Data-driven linearization	[72][73]		
	SDP	[76][77][78][83][84]		
Convoyification	Moment relaxation-	[79]		

Summary and comparison of solution methods

Categories	Algorithms	Pros	Cons	Refs.
Centralized	Programming -based	Can find the global optimum if the problem is convex.	High computation burden in a large- scale problem.	[36][81][98] [99][107]
methods	Metaheuristic	Can find a sub-optimal solution even if the problem is nonconvex .	High computation burden due to a large group of populations.	[97][108]
Distributed	ADMM	Can decompose a problem into sub- problems and protect data privacy.	The convergence rate of ADMM is not always satisfactory.	[110][111][112] [113][114][115] [116][117]
methods	ATC	Suitable for hierarchical design optimization problems.	Implementation is complex, may not handle a meshed network.	[118][119][120] [121][122][123]
Decentralized	РМР	High computational efficiency due to in-parallel solution of sub-problems.	Information exchange among sub- problems is complex.	[124][125] [126][127]
methods	APP	An early algorithm that makes decomposition possible.	Information exchange among sub- problems is complex.	[128][129] [130][131]

SOCP	[80][83][84][85][91]
Sequential SOCP	[82]

Conclusions

- This work reviewed the current progress toward the distribution-level market.
- A typical market-clearing model was ulletestablished.
- DLMP was expressed explicitly, and its • features to other electricity tariffs were discussed.
- This work reviewed the state-of-the-art solution methods to solve the market model.
- Various DLMP-related applications in operation and planning were discussed.

