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A B S T R A C T   

Various building loads, such as heating, ventilation, and air conditioners (HVACs), electric water heaters 
(EWHs), and electric vehicles (EVs), can introduce opportunities for improving the flexibility of electricity 
consumption while satisfying the needs of building owners as well as benefiting the resilience of distribution 
system. To utilize such flexibility, a tri-level distribution market framework is established, including residential 
consumers, load aggregators (LAs), and the distribution system operator (DSO). The uncertainties from all three 
levels are considered. The random consumption behavior at the consumer level is modeled as a Gaussian noise 
that is also aggregated and transmitted to the LA level. The weather temperature in the LA level is forecasted as 
an interval, and the photovoltaic (PV) power in the market-clearing level is modeled by a set of power scenarios 
generated by Generative Adversarial Networks (GANs). Then, a hybrid interval-stochastic programming is pro-
posed to transform the uncertain problems in the first two levels into deterministic ones. For real-time imple-
mentations, a rolling horizon optimization (RHO) scheme is employed to continuously optimize the power 
consumption based on the latest operating information. Finally, case studies on a modified IEEE 69-bus system 
validate the effectiveness of the proposed uncertainty modeling strategies and the RHO scheme.   

1. Introduction 

Grid-interactive efficient buildings (GEBs) have been receiving wide 
attention in recent years. They can introduce opportunities for 
improving the flexibility and efficiency of electricity consumption while 
satisfying the needs of building owners, as well as benefiting the dis-
tribution system [1]. 

Buildings account for over 70 % of all U.S. electricity consumption. 
Among all residential loads, heating, ventilation, and air conditioners 
(HVACs), electric water heaters (EWHs), and electric vehicles (EVs) 
share most of the electricity consumption and have similar energy 
storage characteristics that render them high energy flexible loads [2]. 
Such characteristics make these building loads the research focus to 

satisfy grid requirements, such as load shifting, load shedding, frequency 
regulation, and voltage control [3,4]. 

On the other hand, to keep pace with the deregulation process in 
distribution systems, the concept of a distribution market or local mar-
ket has been proposed as well as the distribution locational marginal 
price (DLMP) [5]. As an extension to the transmission-level locational 
marginal price (LMP), DLMP can reflect the physical characteristics and 
operating conditions of distribution systems. It can also provide price 
incentives for residential loads to improve their energy efficiency. 

However, individual end-users do not have the capability to partic-
ipate directly in the electricity market. Thus, load aggregators (LAs) are 
proposed as agents to aggregate a large number of residential loads to 
provide grid-scale services and participate in electricity markets. 
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Multiple studies have been conducted to aggregate individual end- 
users into LA. The aggregator in [6] is modeled as an intermediary to 
transmit load quantity and dual variables between end-users and utility. 
Reference [7] averages the first-order heat transfer function of all 
HVACs/EWHs to obtain the aggregator’s heat transfer function and 
validate its effectiveness. The authors in [8] aggregate thermostatically 
controlled loads to provide synthetic inertia and primary frequency 
regulation services to the grid. In [9], a data generation and least-square 
parameter estimation (DG-LSPE) algorithm is proposed to estimate 
aggregator parameters for heterogeneous HVACs. 

In the research community, to model the interdependence between 
LAs and a distribution system operator (DSO), one commonly used 
formulation is bilevel programming. In this formulation, LAs and the 
DSO are at different levels and have respective objectives. They are 
coupled due to the coupled variables, such as the DLMP and load 
quantity. In [10], LAs and the DSO are represented using a bilevel 
formulation with the objectives to minimize payments for LAs in the 
upper level and minimize the operating cost for the DSO in the lower 
level. References [11–13] follow a similar bilevel structure but for 
different types of aggregators, such as EV aggregators, virtual power 
plants, and microgrids. In [9], a three-layer hierarchical market struc-
ture is established to integrate the three entities: residential consumers, 
LAs, and the DSO. Based on these aforementioned studies, two essential 
enhancements can be made. 

1) Uncertainties can impact system flexibility and induce unexpected 
economic losses. In [14,15], stochastic and robust optimizations are 
utilized to handle the uncertainty of renewable energy and electricity 
price respectively. However, only one or two uncertainty sources are 
considered. In a three-layer structure, uncertainties can come from 
multiple sources, such as renewable energies, temperature forecasts, and 
consumer behaviors. Thus, the appropriate modeling of these un-
certainties as well as maintaining tractability are of high value. 

2) As time goes by, more latest operating and forecast information 
are updated. Thus, the day-ahead (DA) power consumption schedule 
may not hold optimal. In order to benefit from the released information 
over time and improve the radical or conservative DA schedule, the 
schedule can be modified in real-time (RT). 

In this context, this paper adopts our previous proposed three-layer 
market structure in [9], which is to minimize the total electricity cost 
for residential consumers as well as maintain occupant comfort and the 
distribution system operating constraints. Then, several enhancements 
and new models are proposed to address uncertainties. The detailed 
motivations and technical contributions can be summarized as:  

• Uncertainties from all three layers and multiple sources are modeled, 
namely, the PV power output, outdoor temperature, and the random 
consumption behaviors of individual users. Especially, for the first 
time, the uncertainty of individual users is aggregated and trans-
mitted to the load aggregator level.  

• A feasible hybrid interval-stochastic bilevel programming model is 
established to simulate the interdependence of the first two levels 
with uncertainties, in which state-space representations and Gener-
ative Adversarial Networks (GANs) are utilized to handle the un-
certainties in the first level and second level, respectively.  

• A rolling horizon optimization (RHO) scheme is employed to 
continuously optimize the consumption schedule for consumers 
based on the latest operating information which makes the tri-level 
model schedule realistic. 

The rest of this paper is organized as follows. Section 2 describes the 
modeling and uncertainty sources for the various residential loads. 
Section 3 establishes the aggregator model and the three-level optimi-
zation model. Uncertainty handling and solution methods are presented 
in Section 4. Section 5 introduces the RHO scheme. Case studies are 
performed in Section 6 to verify the proposed modeling methods and 
analyze the impact of uncertainties. Finally, Section 7 concludes the 

paper. 

2. Modeling residential loads with uncertainties 

In this section, the mathematical models and uncertainty sources of 
the various building loads are presented, including HVACs, EWHs, and 
EVs. 

2.1. HVAC model 

An HVAC maintains the room temperature through a thermostat. The 
first-order thermal transfer function is utilized to model a building’s 
varied indoor temperature [16]. However, the indoor temperature may 
not strictly follow this heat transfer function due to the inherent inac-
curacy and householder’s random behaviors, e.g., opening windows, 
cooking, having guests in the house, etc. To account for such un-
certainties, a Gaussian noise is added to the original HVAC model. 
Without loss of generality, we consider a cooling HVAC mode in this 
study. Then, each HVAC can be modeled with the following expressions: 

θh
i,j,t+1 = ah

i,jθ
h
i,j,t + bh

i,jθ̃
out
t + gh

i,ju
h
i,j,t + ε̃h

i,j,t (1)  

θh,min⩽θh
i,j,t⩽θh,max (2) 

where θh
i,j,t is the indoor temperature of building j in aggregator i at 

time t; θ̃
out
t is the forecasted outdoor temperature; uh

i,j,t is the ON/OFF 

status of HVAC j at time t; ε̃h
i,j,t is the Gaussian noise, 

ε̃h
i,j,t ∼ N

(
0,
(
αhθh,mid)2 )

, θh,mid =
(
θh,min + θh,max)/2, αh is a scaler to con-

trol the uncertainty level; ah
i,j, bh

i,j, and gh
i,j are the coefficients of the 

thermal function of HVAC j; θh,min and θh,max are the consumer’s prefer-
able temperature boundaries. The typical parameters of a single HVAC 
can be found in [9]. 

2.2. EWH model 

For an EWH, the uncertainty is the forecasted water usage. Then, 
similar to HVAC, each EWH can be represented as: 

θw
i,j,t+1 = aw

i,jθ
w
i,j,t − bw

i,jW̃
D
i,j,t + gw

i,ju
w
i,j,t + cw

i,j (3)  

θw,min⩽θw
i,j,t⩽θw,max (4) 

where θw
i,j,t is the water temperature in the water tank; bw

i,j represents 
the temperature drop when consuming 1-liter hot water; gw

i,j is the water 
temperature rise after heating 1 hour; uw

i,j,t is the ON/OFF status of the 

EWH; W̃
D
i,j,t ∼ N

(

WD
i,j,t ,
(

αwWD
i,j,t

)2
)

, WD
i,j,t is the forecasted water usage at 

time t, αw is a scaler. The derivation of these parameters can be found in 
the Appendix. 

2.3. EV model 

For an EV, the uncertainty is the forecasted daily driving distance. 
Then, the state-of-charge (SOC) of an EV can be presented as: 

Ei,j,t+1 = Ei,j,t − Pc
i,j,t/

̅̅̅̅ηi
√

+
̅̅̅̅ηi

√
Pdri

i,j,t (5)  

SOCE,min⋅Er
i,j⩽Ei,j,t+1⩽SOCE,max⋅Er

i,j (6)  

∑T

t=1
Pdri

i,j,t = ed⋅d̃i,j (7) 

where Ei,j,t is the stored energy of EV j in aggregator i; Pc
i,j,t is the 

charging power; Pdri
i,j,t is the driving consumption power; ηi is the round- 
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trip efficiency; Er
i,j is the rated energy of EV j; SOCE,min and SOCE,max are 

the consumer’s preferable SOC boundaries; ed is the driving energy 

consumption per mile, d̃i,j ∼ N
(

di,j,
(
αedi,j

)2
)

, di,j is the forecasted daily 

driving distance, αe is a scaler. The typical parameters of a single EV can 
be found in [9]. 

3. Day-Ahead: Tri-Level market framework 

In this section, a tri-level market framework is established to repre-
sent the relationship between residential consumers, LAs, and the DSO. 
In this structure, each entity has its objective and operating constraints 
which are considered separately. The LA collects all operation and 
preference information from the contracted residential users. Then, the 
aggregated model is established and the LA bids in the distribution 
market. After collecting bids and offers from all market participants, the 
DSO clears the market and broadcasts generation/load capacity and 
DLMP to all participants. At last, the LAs dispatch the optimal aggre-
gated loads to end-users. 

3.1. First Level: LAs 

The first level minimizes the total electricity payments for LAs which 
include HVAC aggregator, EWH aggregator, and EV aggregator. 

min
∑

t∈T

(
∑

i∈H
πp

i,t⋅PH
i,t +

∑

i∈W
πp

i,t⋅PW
i,t +

∑

i∈E
πp

i,t⋅PC
i,t

)

(8) 

where πp
i,t is the DLMP; PH

i,t, PW
i,t and PC

i,t are respectively the power 
consumption of HVAC, EWH and EV aggregators; H, W and E are the set 
of aggregators, Τ is the set the simlation time slots. 

1) HVAC aggregator model: By utilizing the DG-LSPE algorithm pro-
posed in [9], the HVAC aggregator’s thermal transfer function in a 
cooling mode can be obtained. The operating constraints are shown 
below, the uncertainties are the forecasted outdoor temperature ̃θ

out
t and 

the aggregated noise ̃εh
i,t. 

θh
i,t+1 = ah

i θh
i,t + bh

i θ̃
out
t + gh

i uh
i,t + ε̃h

i,t (9)  

θh,min⩽θh
i,t⩽θh,max (10)  

synh,min
i ⩽uh

i,t⩽synh,max
i (11)  

− Δuh,dr
i ⩽uh

i,t+1 − uh
i,t⩽Δuh,ur

i (12)  

SOCh
i,t =

θh,max − θh
i,t

θh,max − θh,min (13)  

SOCh,min
i ⩽SOCh

i,t⩽SOCh,max
i (14)  

PH
i,t = uh

i,t⋅N
h
i ⋅Ph,rated (15)  

θ̃
out
t ∈

[
θout

t , θout
t

]
=
[
θout

t − αtempθout
t , θout

t + αtempθout
t

]
(16) 

where (9) represents the varied indoor temperature; θh
i,t is the indoor 

temperature of aggregator i at time t; ah
i , bh

i and gh
i are the coefficients of 

the aggregator; uh
i,t is an approximate continuous variable in [0, 1] 

indicating the ON status ratio in HVAC aggregator i; ̃εh
i,t is the aggregated 

noise of end users, ε̃h
i,t ∼ N

(
0, σh2

i,t

)
, σh

i,t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nh

i
j=1
(
αhθmid)2

√

/Nh
i , Nh

i is the 

number of HVACs in aggregator i; (10) is the indoor temperature setting 
boundary; (11) is the synchronous constraint which limits the number of 
HVACs to be turned ON at time step t; (12) is the ramp constraints to 
limit the status transformation rate; (13) and (14) are energy constraints 
to avoid the situation that indoor temperatures centering at the setting 

temperature boundaries [17]; (15) is to obtain the active power of the 
HVAC aggregator; (16) is the outdoor temperature forecasting interval; 
and αtemp is a scaler to control the uncertainty interval. 

2) EWH aggregator model: Similar to the HVAC aggregator model, the 
EWH aggregator model and operating constraints are shown as follows: 

θw
i,t+1 = aw

i θw
i,t − bw

i W̃
D
i,t + gw

i uw
i,t + cw

i (17)  

θw,min⩽θw
i,t⩽θw,max (18)  

synw,min
i ⩽uw

i,t⩽synw,max
i (19)  

− Δuw,dr
i ⩽uw

i,t+1 − uw
i,t⩽Δuw,ur

i (20)  

SOCw
i,t =

θw,max − θw
i,t

θw,max − θw,min (21)  

SOCw,min
i ⩽SOCw

i,t⩽SOCw,max
i (22)  

PW
i,t = uw

i,t⋅N
w
i ⋅Pw,rated (23) 

where the aggregated coefficients aw
i , bw

i , gw
i and cw

i can also be ob-
tained by the DG-LSPE algorithm; the uncertainty is the aggregated 

water usage W̃
D
i,t, W̃

D
i,t ∼ N

(

W̃
D
i,t , σw2

i,t

)

, WD
i,t =

∑Nw
i

j=1WD
i,j,t/Nw

i , σw
i,t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nw

i
j=1

(
αwWD

i,j,t

)2
/Nw

i

√

, and Nw
i is the number of EWHs in aggregator i. 

3) EV aggregator model: The EV aggregator and operating constraints 
can be modeled as: 

Ei,t+1 = Ei,t +
̅̅̅̅ηi

√
PC

i,t − PDri
i,t /

̅̅̅̅ηi
√ (24)  

SOCe,min
i ⋅ER

i ⩽Ei,t+1⩽SOCe,max
i ⋅ER

i (25)  

0⩽PC
i,t⩽PC,max

i (26)  

Ei,t=0⩽Ei,t=T (27)  

∑T

t=1
PDri

i,t = edd̃i (28)  

ER
i =

∑N
e
i

j
Er

i,j (29) 

where (24) is the energy of EV aggregator i; it is assumed all EVs have 
the same round-trip efficiency ηi; (25) represents the aggregator’s SOC 
limits; (26) is the charging power limit; (27) ensures the total charging 
energy is no less than the total consumption energy; (28) describes the 
driving consumption power; (29) refers to the rated energy of an 
aggregator which equals to the summation of the rated energy of mul-
tiple EVs, the uncertainty is the aggregated daily driving distance d̃i, 

d̃i ∼ N
(

d̃i, σe2
i

)

, di =
∑Ne

i
j=1di,j, and σe

i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Ne

i
j=1
(
αedi,j

)2
√

. 

3.2. Second Level: DSO 

In the second level, the DSO clears the market, its objective is to 
minimize the system’s generation cost. The uncertainty is PV’s power 

output P̃
PV
i,t . 

min
∑

t∈T

∑

i∈G
ci,t⋅PG

i,t (30)  

s.t.
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∑

i∈G
PG

i,t +
∑

i∈PV
P̃

PV
i,t =

∑

i∈B
PD

i,t +
∑

i∈H
PH

i,t +
∑

i∈W
PW

i,t +
∑

i∈E
PC

i,t + Ploss
t : λp

t (31)  

∑

i∈G
QG

i,t =
∑

i∈B
QD

i,t +Qloss
t : λq

t (32)  

Vmin⩽Vsub,t +
∑

i∈B
Zp

j,i

(

PG
i,t + P̃

PV
i,t − PD

i,t − PH
i,t − PW

i,t − PC
i,t

)

+

∑

i∈B
Zq

j,i

(
QG

i,t − QD
i,t

)
⩽Vmax : ωv,min

j,t ,ωv,max
j,t

(33)  

PG,min
i,t ⩽PG

i,t⩽PG,max
i,t : ωp,min

i,t ,ωp,max
i,t (34)  

QG,min
i,t ⩽QG

i,t⩽QG,max
i,t : ωq,min

i,t ,ωq,max
i,t (35)  

πp
i,t =

∂L
∂PD

i,t
= λp

t +

(

λp
t ⋅

∂Ploss
t

∂PD
i,t

+ λq
t ⋅

∂Qloss
t

∂PD
i,t

)

+
∑

j∈B

(
ωv,min

j,t − ωv,max
j,t

)
Zp

j,i (36) 

where (31) and (32) are the active and reactive power balance 
constraints; PG

i,t , PD
i,t, PH

i,t, PW
i,t , PC

i,t, Ploss
t , QG

i,t, QD
i,t and Qloss

t are the active/ 
reactive generation/load/power loss respectively; (33) represents the 
voltage limit which is derived from linearized power flow for distribu-
tion (LPF-D) [5]; Zp and Zq are matrices of nodal voltage change to net 
power injections, where the substation is the reference bus that connects 
to the transmission system; (34) and (35) are generators’ active and 
reactive power output limits; (36) is the expression of the DLMP which is 
derived from the Lagrangian function of the second level problem, it can 
be seen that the DLMP includes three components: the marginal energy 
price, the marginal loss price (including real and reactive power), and 
the marginal voltage support price; λp

t , λq
t , ωv,min

j,t , ωv,max
j,t , ωp,min

i,t , ωp,max
i,t , 

ωq,min
i,t and ωq,max

i,t are dual variables. The power loss is linearized by using 
the first order Taylor’s series. 

Ploss
t ≈ Ploss*

t +
∑

i∈B

∂Ploss
t

∂PG
i,t

(
ΔPG

i,t − ΔPD
i,t

)
+
∑

i∈B

∂Ploss
t

∂QG
i,t

(
ΔQG

i,t − ΔQD
i,t

)
(37)  

Qloss
t ≈ Qloss*

t +
∑

i∈B

∂Qloss
t

∂PG
i,t

(
ΔPG

i,t − ΔPD
i,t

)
+
∑

i∈B

∂Qloss
t

∂QG
i,t

(
ΔQG

i,t − ΔQD
i,t

)
(38) 

where power losses Ploss∗
t and Qloss∗

t , power output PG∗
i,t and QG∗

i,t , and 
load demand PD∗

i,t and QD∗
i,t refer to the power flow results at an initial 

operating point; ∂Ploss
t

∂PG
i,t 

and ∂Ploss
t

∂QG
i,t 

are the partial derivatives of Ploss
t to bus 

injection PG
i,t and QG

i,t at every bus and every time step, and they are 
opposite in sign with the partial derivatives of Ploss

t to bus demand PD
i,t and 

QD
i,t; ΔPG

i,t = PG
i,t − PG∗

i,t is the power difference between the to-be- 
determined operating point and the initial operating point; ΔQG

i,t, ΔPD
i,t 

and ΔQD
i,t can be expressed similarly. 

The related linearization discussion can also be found in [5]. The 
main difference between [5] and this work is that PD and QD are assumed 
constant in the former but considered flexible loads in this work. So 
ΔPD

i,t = PD
i,t − PD∗

i,t is also one item in (37). 

3.3. Third Level: Individual end users 

In the third level, each LA dispatches the corresponding optimal load 
obtained in the first level to individual end-users. The priority-control- 
based load dispatching algorithm for HVACs, EWHs, and EVs in [9] is 
used in this study for dispatching the end-users. 

4. Uncertainty modeling and solution methods 

The proposed trilevel problem with uncertainties in each level is 
hard to solve directly. Thus, two methods are applied to transform the 

original problem into a tractable one. 1) Decoupling: the first two levels 
are within a bilevel structure, and they have a leader–follower structure 
with the third level. Thus, the trilevel problem can be decoupled and 
solved sequentially, which means the first two levels are solved first, 
then the optimal aggregated load is dispatched to individual consumers 
in the third level. 2) Uncertainty handling: to solve the bilevel problem 
with uncertainties, the first step is to transform the uncertainty models 
into the equivalent deterministic ones by interval or stochastic optimi-
zation. Then, the mature bilevel solution methods can be used to solve 
the deterministic bilevel problems. 

4.1. Uncertainty handling 

Interval optimization and stochastic programming are the two 
widely used uncertainty handling methods. How to handle uncertainties 
to ensure the solvability and maintain decision-maker’s objective is a 
key point. In this paper, in the first level, interval optimization is utilized 
to model the uncertainty of the forecasted temperature and the aggre-
gated random power consumption behaviors to obtain the best and 
worst payment for aggregators. In the second level, stochastic pro-
gramming is adopted to simulate the volatility of PV power output. 

There are three considerations for these different handling strategies. 
1) From the perspective of LAs in the first level, they may care more 
about the best and worst payment range rather than the expected pay-
ment, thus interval optimization is appropriate. 2) Based on the avail-
able PV historical data, possible PV scenarios can be generated, then 
stochastic modeling is more effective as a risk measure [18]. 3) Another 
advantage is that stochastic programming can maintain the convexity of 
the second level which ensures the bilevel problem is tractable.  

1) Uncertainty transformation in the first level: State-space 
representation 

The variable θh
i,t in (9) is a time-dependent variable, thus the state- 

space structure is proper to represent the dependent relationship. 
Constraint (9) can be written as below: 

θ = A− 1
(

Bθ̃
out

+ Gu + C + ε̃
)

(39) 

where A is a diagonal matrix with diagonal elements 1 and sub- 
diagonal elements -a; B and G are diagonal matrices with diagonal el-
ements b and g respectively; C is the vector with initial conditions, and C 
= [aθ0, 0, …, 0]T. By setting 95% confidence interval, the uncertainty 
interval is ε̃ ∈ [ − 2σ,2σ]. Note that (39) is a general formulation of the 
indoor temperature for each HVAC aggregator. 

Next, by merging constraints (9) and (10), we have: 

θmin⩽A− 1
(

Bθ̃
out

+ Gu + C + ε̃
)

⩽θmax (40) 

The interval optimization model can be converted to an optimistic 
model and a pessimistic model [19]. The robust counterpart for the 
optimistic model is: 

A− 1(Bθout + Gu + C + ε)⩽θmax (41)  

θmin⩽A− 1(Bθout + Gu + C + ε) (42) 

While the robust counterpart for the pessimistic model is: 

A− 1(Bθout + Gu + C + ε)⩽θmax (43)  

θmin⩽A− 1(Bθout + Gu + C + ε) (44) 

Constraints (13) and (14) can be merged in the same way. 
The state-space representation for EWHs and EVs can also be ob-

tained in a similar way. Now, the uncertainties in the first level have 
been transformed into deterministic ones. 
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2) Uncertainty transformation in the second level: GANs scenario 
generation 

To simulate the uncertainty of PV power output, a widely used 
approach is to generate a finite number of possible PV scenarios. Then, 
the second level becomes a stochastic programming problem. 

In addition to the traditional probability-based scenario generation 
methods, a series of machine learning related methods have been pro-
posed in power systems in recent years. In [20], the k-means, as an 
unsupervised learning method, is utilized to classify the historical data 
and reduce the number of the generated scenarios. In [21], the long 
short-term memory (LSTM) is proposed to characterize the stochasticity 
of the electricity price. GANs have been extended to generate power 
scenarios for renewable resources in [22]. Compared to the traditional 
methods, GANs have two advantages: 1) they can generate scenarios 
only according to historical data, without assuming or fitting probability 
distributions; 2) they belong to unsupervised learning, which can avoid 
labeling work that sometimes is impossible and inaccurate. Thus, the 
GANs approach is selected for scenario generation in this study. 

The detailed scenario generation procedures are elaborated in [22]. 
These huge number of generated scenarios cover most if not all possible 
PV outputs. However, only a fraction of scenarios has a similar pattern 
with the day-ahead PV point-forecast power. Based on all scenarios and 
the forecasted power, a candidate scenario set can be obtained, and then 
a scenario reduction strategy is introduced to reduce the computational 
burden. 

The main idea of scenario reduction is to minimize the Kantorovich 
probability distance between reduced scenarios and the candidate sce-
nario set. The detailed mathematical derivations can be found in [23]. 
The procedures of obtaining the candidate scenario set and scenarios 
reduction are illustrated in Algorithm 1.  

Algorithm 1: Scenario Reduction 

1. Initialization: Calculate the Euclidean distance between point forecast profile and 
all scenarios; 

d(PPV
,PPV,s) =

⃦
⃦PPV

− PPV,s⃦⃦
2, s = 1,2, ...,S 

where PPV is the point-forecast power, and PPV,s is the generated scenario. 
2. Candidate Scenario set: Choose the closest 30 % of all scenarios as the candidate 

scenario setSC, with the probability of each candidate scenariop = 1/|SC|; 
3. Kantorovich probability distance-based scenario reduction: 

3.1 Eliminate scenario sm if it meets the following condition; 
dm = min

{
p(m)⋅p(n)⋅d(PPV,m ,PPV,n)

}
m,n ∈ {1, ...,SC},n ∕= m 

3.2 Update the probability of sn and the number of scenarios; 
SC = SC − 1, p(n) = p(n) + p(m)

3.3 If SC > S0(S0 is the preferred scenario number), go back to Step 3.1; otherwise, 
terminate the algorithm.    

3) Compact notation 

Based on the uncertainty modeling, the unified compact notation of 
the first two levels for the optimistic model or the pessimistic model can 
be presented as follows [24]: 

min
y

∑

s∈S0

p(s)πT(s)y (45)  

s.t. Ay⩽b (46)  

π(s) ∈ argmin
x

∑

s∈S0

p(s)cT x(s) (47)  

s.t. W(s)x(s)⩽r(s) − T(s)y (48) 

where (45)-(46) represent the objective and constraints of the opti-
mistic model or the pessimistic model in the first level, and (47)-(48) 
represent the stochastic model in the second level. 

4.2. Solution method 

The solution methods of the bilevel problem have been widely 
studied [25]. In this paper, due to the convexity in the second level, the 
equivalent transformation via Karush-Kuhn-Tucker (KKT) optimal con-
ditions is adopted. The coupled first two levels can be solved into two 
steps which are presented below. 

1) Mathematical program with equilibrium constraints (MPEC) model: 
The second level is a deterministic linear programming problem with a 
finite number of scenarios, it can be transformed into a set of constraints 
adding to the first level by obtaining the KKT optimality conditions. 
Then, the bilevel problem becomes a single-level problem which is 
called MPEC. 

2) Mixed-integer linear programming (MILP) model: The MPEC model 
is non-convex due to the bilinear objective function and the comple-
mentary slackness constraints. Therefore, the strong duality theory and 
big-M approach can be utilized to transform the MPEC to a MILP which 
is tractable. The detailed derivation of MPEC and MILP can be found in 
[26] and is neglected here. 

5. Real-Time: Rolling horizon optimization 

In this section, to reflect the continuous clearing nature of the RT 

Fig. 1. Illustration of the rolling horizon optimization scheme.  
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market and integrate the latest operating information, RHO is applied to 
allow the re-scheduling and re-dispatching [27]. 

In general, the closer to the real-time t, the less prediction errors of 
the PV power output and outdoor temperature, and the more accurate 
end users’ housing/EV conditions. In this context, aggregators are 
willing to adjust their schedules and the DSO can make a precise DA 
market clearing. By incorporating the latest released information, the 
radicalness and conservativeness of the interval optimization in the DA 
market can also be reduced. 

The diagram of the RHO scheme is illustrated in Fig. 1. The pro-
cedures of the RHO scheme are described in Algorithm 2. The first two 
levels are highly coupled due to the coupled decision variables: Utilizing 
fewer data is indeed an advantage for some methods. They form a 
Stackelberg model: LAs bid in the distribution market with load de-
mands, DSO clears the market and sends the DLMP back to LAs, then LAs 
make their decisions based on DLMP and resubmit their bids, and so on. 
The complicated process in these two levels can be solved by the typical 
bilevel solution described in Section 4.2. After that, LAs can obtain the 
aggregated demand PH

i,t, PW
i,t and PC

i,t. As shown in Fig. 1, the time step in 
the first two levels is 1 h, while the third level utilizes a high-resolution 
control interval which is 10 min. In the third level, LAs dispatch the 
aggregated demand to all the contracted consumers based on the 
priority-based dispatching algorithm. LAs send control signals (e.g., uh

i,j,t , 
uw

i,j,t, Pc
i,j,t) to consumers at the beginning of every 10 min, collect oper-

ating information (e.g., θh
i,j,t, θ

w
i,j,t, Ei,j,t , θ̃

out
t ) at the end of every 10 min, 

and calculate the control signals and resend them to consumers for the 
next 10 min. At the end of the 1-hour time step, LAs update θh

i,t+1, θw
i,t+1, 

Ei,t+1, and θ̃
out
t+1 for the next RHO schedule.  

Algorithm 2: Procedures of RHO 

1. Aggregator level: At t, LAs collect the forecasted outdoor temperature θ̃
out
t and 

indoor temperatures θh
i,j,t , water temperatures θw

i,j,t , EV SOCs of individual users, then 

update the aggregated indoor temperature θh
i,t , water temperature θw

i,t and EV energy 
Ei,t ; 

2. DSO level: The DSO collects the latest forecasted PV power output, then updates 
the PV power scenarios by Algorithm 1; 

3. Solve the first bi-level model: Solve the rest (24 - t) hours interval-stochastic bi- 
level model, obtain the optimal load demand schedule, the time step is 1 h; 

4. Residential level: LAs dispatch the optimal demand schedule of hour t + 1 to 
individual users; 

5. Termination checking: t ¼ t + 1, check whether t <= T or not. If yes, go back to 
Step 1; otherwise, the algorithm terminates.  

6. Case studies 

The proposed hybrid interval-stochastic tri-level model with multi-
ple uncertainty sources is tested on a modified IEEE 69-bus distribution 
system. Simulations are performed on a laptop with an Intel Core i7- 
8650U CPU and 16 GB RAM. Problems are formulated in MATLAB 
R2020a and YALMIP and solved by GUROBI 9.0.0. 

6.1. Modified IEEE 69-bus distribution system 

The modified IEEE 69-bus system is shown in Fig. 2. Microturbines 
(MTs), static var compensators (SVCs), and PVs are installed in the 

Fig. 2. The modified IEEE 69-bus system.  

Table 1 
Parameters of the modified IEEE 69-bus system.  

Class Parameter Typical Value 

MT Location Bus #13, 20, 58, 65 
Bidding price $ 70/MWh 
Capacity 0.5 MW 
αi 0.95 

SVC Location Bus #27, 57, 62 
Bidding price $ 0/MVarh 
Capacity 0.5 MVar 

PV Location Bus #17, 24, 43, 59 
Bidding price $ 15/MWh 
Capacity 0.5 MW 
αi 0.95 

System constraints Vmin 0.95p.u. 
Vmax 1.05p.u. 
Vsub 1.05p.u. 
Peak fixed load 5.323 MW + j3.773 MVar 

HVAC & EWH 
aggregator 

Location Bus #14, 18, 22, 33, 40, 45, 
61 

Number of houses 200, 200, 200, 200, 200, 
200, 200 

SOC limit [0.15, 0.85] 
Ramp up/down rate 0.1 
Water mass m (kg) 144, 162, 180, 198, 216, 

162, 180 
Heat loss Hr (× 10-2 kW) 5.6, 6.3, 7, 7.7, 8.4, 6.3, 7 
HVAC synchronization 
limit 

[0.1, 0.7] 

EWH synchronization 
limit 

[0, 0.7] 

EV aggregator Location Bus #11, 21, 55, 64 
Number of EVs 300, 300, 300, 300 
Number of chargers 25, 25, 25, 25 
SOC limit [0.2, 0.8]  
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system. The parameters of the distribution system, HVAC aggregators, 
EWH aggregators, and EV aggregators are listed in Table 1. 

For simplicity, it is assumed that each house has both HVAC and 
EWH, and if the owner is willing to participate in a LA, both HVAC and 
EWH are included. While the EV charging stations are located at some 
specific buses, they act as EV aggregators. 

6.2. PV scenarios 

The historical PV dataset is obtained from NREL Solar Integration 
Datasets [28]. The normalized power profiles over one year are illus-
trated in Fig. 3 (a). Based on GANs, 1200 PV power scenarios are 
generated as shown in Fig. 3 (b). These scenarios cover the most possible 
PV power outputs in one year, but they are not proper for the schedule of 
a specific day. Thus, according to Algorithm 1, 360 scenarios are 
selected as the candidate scenario set, which is shown in Fig. 3 (c). 
However, the candidate set still has too many scenarios. Then, they are 
further reduced, and finally 10 scenarios are kept, which are shown in 
Fig. 3 (d). In these figures, green curves are generated scenarios, and the 

red curve is the forecasted day-ahead PV curve in a specific day. 
If Fig. 3 (a) and Fig. 3 (b) are compared, we may observe that the 

scenarios generated by GANs can well follow the distribution of the 
historical set. From Fig. 3 (c) and Fig. 3 (d), it can be seen that the 
candidate set and the reduced set can cover the forecasted curve and 
maintain the ramp trend with the forecasted one. These findings 
demonstrate the power and effectiveness of GANs in scenario 
generation. 

6.3. Day-ahead scheduling 

The results of the DA scheduling are illustrated and discussed in this 
subsection. Table 2 shows the aggregator payments and system gener-
ation cost under different uncertainty levels. It can be observed that with 
the increase of the uncertainty level, the payments and cost increase in 
the pessimistic model and decrease in the optimistic model. This is 
because a bigger uncertainty level will worsen the worst operating 
condition for the pessimistic model while extending the feasible region 
for the optimistic model. Note that when the uncertainty scaler is too 

Fig. 3. PV power scenario sets.  

Table 2 
Aggregator payments and system generation cost under different uncertainty levels.  

Case Uncertainty level Load aggregator payment ($) System generation cost ($) 
αh αw αe αtemp Optimistic Pessimistic Optimistic Pessimistic 

1 0 0 0 0  999.00  999.00  3349.63  3349.63 
2 0.001 0.01 0.01 0.005  985.08  1013.54  3335.71  3364.17 
3 0.002 0.02 0.02 0.010  971.41  1028.25  3322.04  3378.88 
4 0.003 0.03 0.03 0.015  958.18  1043.09  3308.81  3393.72 
5 0.004 0.04 0.04 0.020  945.22  1058.08  3295.85  3408.71 
6 0.005 0.05 0.05 0.025  932.62  1073.45  3283.25  3424.08 
7 0.006 0.06 0.06 0.030  921.09  1088.94  3271.72  3439.57 
8 0.007 0.07 0.07 0.035  910.65  1104.49  3261.29  3455.12 
9 0.008 0.08 0.08 0.040  900.39  1120.38  3251.03  3471.01 
10 0.009 0.09 0.09 0.045  890.35  1136.04  3240.98  3486.67 
No flex 0 0 0 0  1529.71  1529.71  3850.27  3850.27  
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large, like αh⩾0.05, the pessimistic problem becomes infeasible, which 
indicates that the uncertainty level can affect the feasibility of the worst 
case. 

The reason that αh is less than αw and αe is that the indoor temper-
ature is set to a tight range (e.g., [18, 22] ℃), thus a smaller αh is proper. 
Also, a bigger αh will easily make the indoor temperature exceeds the 
setting range due to the accumulative effect of the uncertainty which 
will further cause the problem infeasible. 

The expected DLMP profile of the pessimistic model in Case 1 is 
illustrated in Fig. 4. Here, the expected DLMP is defined as the weighted 

sum of the DLMP of all scenarios. At each time step, the DLMP varies 
spatially. This is because the marginal power loss price is a component of 
DLMP as stated in (36). Due to the radial topology, if there is no DG 
power injection, the DLMP increases when the node is farther away from 
node 1 because of a higher power loss factor at that node. The DLMP and 
its components of one branch (branch 1–2-3–4-47–48-49–50) at t =
19:00 are shown in Table 3. Since no voltage constraints are violated, 
thus the voltage support price is $0. 

At the same node, DLMP is lower during off-peak hours and higher 
during peak hours. This is because the wholesale market price is the 
main component of the DLMP, and thus DLMP has a similar pattern to 
the wholesale market price. With these characteristics, DLMP can be 
used to incentivize power consumption for flexible loads. 

The system load profiles of the pessimistic model under different 
uncertainty levels are depicted in Fig. 5. In addition, the load profile of 
no flexible residential load is also depicted. Here, “no flexible load” 
means that residential loads do not response to the DLMP and are 
regarded as fixed loads. From Fig. 5, it can be observed that if compared 
with the Case “No flex”, Case 1 ~ Case 10 have the load shifting effect, 
and Case 1 shifts the most load. The load shifting becomes weak as the 
uncertainty level increases. 

The system load profiles of the optimistic model are depicted in 
Fig. 6. It can be found that all cases achieve the load shifting, and Case 
10 is the best. Also, the electricity consumption decreases with the in-
crease of uncertainty level. From Fig. 5 and Fig. 6, it can be concluded 
that bigger uncertainty level induces conservative results for the pessi-
mistic model while radical results for the optimistic model. 

6.4. Real-time scheduling 

In this subsection, the optimistic results and the pessimistic results 
obtained by DA schedule and the results obtained by RT schedule are 
analyzed and discussed. 

The flexible load profiles of the DA and RT schedules are shown in 
Fig. 7. For the pessimistic DA model, it can be found that during 
5:00–13:00, the RT load curve is a bit higher than that of DA, while 
lower during 14:00–24:00. For the optimistic DA model, during 
1:00–9:00, the RT load curve is somewhat overlapped with that of DA, 
while higher during 10:00–24:00. Overall, the optimistic DA schedule 
has the best load shifting effect, then the RT schedule and the pessimistic 
DA schedule. Such results are intuitive because the optimistic model 
represents the best ideal case, the pessimistic model represents the worst 
ideal case, and RT achieves a balance by modifying the two extreme 
cases by knowing more realistic operating information. 

Fig. 4. Expected DLMP.  

Table 3 
DLMP and its components of one branch at t = 19:00.  

Node DLMP ($) Energy ($) Loss ($) Voltage support ($) 

1  41.240  41.24 0 0 
2  41.242  41.24 0.002 0 
3  41.244  41.24 0.004 0 
4  41.249  41.24 0.009 0 
47  41.251  41.24 0.011 0 
48  41.298  41.24 0.058 0 
49  41.447  41.24 0.207 0 
50  41.468  41.24 0.228 0 

*Energy, loss, voltage support refers to the three components of the DLMP. 

Fig. 5. System load profiles under different uncertainty levels for the pessimistic model.  
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The individual indoor temperatures in one HVAC aggregator in DA 
and RT are shown in Fig. 8 (a)(b)(c). The individual water temperatures 
in one EWH aggregator are shown in Fig. 8 (d)(e)(f). 

From Fig. 8 (c), the HVAC indoor temperatures are just above the 
lower temperature set point during time intervals 40 ~ 80, and below 
the upper temperature set point during time intervals 115 ~ 144. This is 
exactly the precooling of HVACs and the DLMP plays an important role 
in forming these patterns. Incentivized by the temporal characteristic of 
the DLMP and the thermal storage characteristic of buildings, HVACs are 
turned on more frequently to cool down the building when the DLMP is 
low and are turned on less frequently to maintain the indoor tempera-
ture within the setting boundary when the DLMP is high. Water has a 
similar thermal storage characteristic due to its high specific heat ca-
pacity. Thus, water temperature shows similar patterns to the buildings’ 
temperature. As shown in Fig. 8 (f), EWHs preheat water first and then 
maintain the water temperature within the setting range. 

In addition, it can be observed that obviously, the individual indoor 
temperatures in the optimistic DA model usually exceed the setting 
temperature boundary, while the temperatures in the pessimistic model 
are mainly distributed in the middle of the temperature boundary, 
indicating the HVAC flexibility is either overused or underutilized. The 
temperatures in RT are well maintained inside or around the boundary, 
which means the precooling of HVACs is properly utilized. From Fig. 8 

(d)(e)(f), water temperatures in RT are also better maintained in the 
setting boundary than that of DA. 

These findings indicate that the day ahead scheduling is too radical 
or too conservative. The deployment of RHO by updating the operating 
information can significantly mitigate the radical or conservative DA 
scheduling. 

7. Conclusion 

In this paper, a three-layer market structure is established to quan-
titatively identify the flexibility potentials of residential buildings. In the 
day-ahead schedule, uncertainties from all layers are considered, which 
are the random power consumption behaviors, weather temperature 
forecasts, and PV power outputs. Then, a hybrid interval-stochastic 
programming is proposed, in which the Gaussian noise, interval fore-
cast and GANs are utilized to model uncertainties respectively. In real- 
time, RHO is applied to continuously modify the day-ahead schedule 
according to the latest released information. Case studies have the 
following conclusions: 

1) The trilevel structure can well utilize the residential demand 
flexibility to benefit individual users and satisfy their power needs, as 
well as reducing the distribution system total operational cost. 

2) The proposed hybrid interval-stochastic programming can 

Fig. 6. System load profiles under different uncertainty levels for the optimistic model.  

Fig. 7. Load profiles of total flexible load in day-ahead and real-time schedules.  
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effectively handle the uncertain bilevel problem and maintain the 
problem tractability. It can also provide optimistic and pessimistic re-
sults for decision-makers. 

3) By integrating the latest system operating and forecast informa-
tion, the RHO scheme can mitigate the radicalness and conservativeness 
of the day-ahead schedule. 
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Appendix: Modeling of EWH 

A single EWH can be modeled with the following expressions [29]: 

θw
t+1 = awθw

t − bwWD
t + gwuw

t + cw (49)  

θw,min⩽θw
t ⩽θw,max (50)  

aw =

(

1 −
3600ΔtHr

40mcp

)

(51)  

cw =
3600Hrθh

t

40mcp
(52)  

gw = 3600⋅
Pw,rated

mcp
(53)  

bw =

(
θw

t − θw,co)

m
(54) 

where Pw,rated is the rated power of the heating element, m is the mass of the water inside the water tank, cp is the specific heat of water (4.2 kJ/kg 
℃), 3600 is to transfer time unit from hour to second, Hr represents the amount of water tank heat loss to the ambient per second, and θw,co is the 
temperature of inlet cold water. When obtaining bw, it is assumed that the consumed hot water has a constant temperature of 55℃, since the used 
water temperature is always within the upper and lower limits. Typical parameters of an EWH are shown in Table 4. 

Note, the indoor temperature θh
t is assumed constant (20℃) in this model because it fluctuates within a tight range due to the HVAC in the house, 

and θw,co
t is also assumed constant (10 ℃). 
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