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Abstract— The participation factor (PF), as an important 

modal property for small-signal stability, evaluates the linkage 

between a state variable and a mode. Applying the normal form 

theory, a nonlinear PF can be defined to evaluate the participation 

of a state variable into modal dynamics following a large 

disturbance, that gives considerations to resonances and 

nonlinearities up to a desired order. However, existing nonlinear 

PFs are inconsistent with the conventional linear PF when 

nonlinear dynamics following a large disturbance attenuate and 

linear modal dynamics become dominating. This paper proposes 

a time-variant nonlinear PF by introducing a time decaying factor 

and the definition of a nonlinear mode. The new PFs consider 

modes of resonances and their values naturally transition to a 

linear PF when the system state becomes close to its equilibrium. 

The case study on a two-area four-generator system shows that the 

new PF can correctly rank generators by their participations in 

natural and resonance modes of nonlinear oscillation subject to a 

large disturbance. 

Keywords— Participation factor, small-signal stability, power 

system oscillation, normal form method. 

I. INTRODUCTION  

Sustained power oscillations, especially those following a 
large disturbance, are threats to the stability and dynamic 
performance of a power system. In order to mitigate an 
oscillation to improve rotor angle stability of generators, control 
actions, e.g., damping control by power system stabilizers, can 
be taken at key generators that participate most in the oscillation 
mode. The participation factor (PF) is a useful index to evaluate 
the two-way linkage between each generator (or a state variable) 
and an oscillation mode (characterized by a pair of conjugate 
eigenvalues). It is defined as the product of corresponding 
elements on the mode shape and mode composition, and hence 
it considers both modal controllability and observability [1]. As 
a modal property, PFs are widely used in power system stability 
studies, such as PSS design [2], SVC placement [3].  

A basic assumption with the PF is that the system model is 
linear, so it is usually used for linear system studies or small-
signal stability analysis of a nonlinear system subject to a small 
disturbance. To extend the application of the conventional linear 
PF to nonlinear systems under a large disturbance, a nonlinear 
PF (NPF) is proposed in [3-7] based on the normal form theory, 
which transforms a nonlinear system to a linear system through 
a nonlinear coordinate transformation [3]. Paper [5] in 2005 

summarizes the feasibility, contribution and application of the 
nonlinear PFs in detail.  

In the past decade, PFs have been redefined or extended from 
different aspects, such as the extended PFs [8]-[10] and modal 
PFs [11]. However, many of these PFs are neither consistent nor 
unified in one framework. For instance, resonance modes are 
often considered by existing nonlinear PFs but are ignored by 
the conventional linear PF. Thus, when studying the process of 
damping an oscillation caused by a large disturbance, one often 
needs to switch from a nonlinear PF to the linear PF when 
judging the oscillation amplitude to be small enough. Thus, a 
discontinuity between nonlinear and linear PFs exists. 

For a unified framework of PFs on oscillations following 
small and large disturbances, this paper proposes a new time-
variant nonlinear PFs by introducing a time decaying factor and 
the definition of a nonlinear mode based on convolution of the 
spectrum and a normal distribution in the frequency domain. 
The new PF considers resonance modes, and naturally 
transitions to a linear PF when the system state becomes close 
to its equilibrium. Similar to the application based on nonlinear 
PF [6,7], this time-variant PF, as a kind of generalization for the 
linear PF and nonlinear PF, can provide a reference for the 
power system stabilizer placement and design in the small-
signal stability study. The rest of the paper is organized as 
follows: Section II reviews the definitions of the linear PF, 
nonlinear PFs and other related PFs. Section III discusses the 
problems with existing nonlinear PFs in detail. Section IV 
introduces the proposed time-variant nonlinear PF. Besides, the 
convolution is used to include influences from resonance modes. 
The case study on Kundur’s two-area system is presented in 
section V to show that new PFs can correctly rank generators by 
their participations in natural and resonance modes of nonlinear 
oscillation subject to a large disturbance. At last, the paper 
concludes in section VI. 

II. BACKGROUND OF DIFFERENT PARTICIPATION FACTORS 

A. The Conventional Linear PFs [1] 

A power system can be modeled by a set of nonlinear 

differential equations: 

 ( , )f=x x u   (1) 

Linearize the model at its equilibrium point to generate: 

 =x Ax   (2) 
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state denoted by λi. Its left eigenvector ψi=[ψi1, … ψin] and right 

eigenvector are denoted by ϕi=[ϕ1i, … ϕni]T, respectively. They 

are actually the mode composition and mode shape of the i-th 

mode of λi. The conventional linear PF of the k-th state in the i-

th mode is dimensionless as defined by 

 ki ki ikp    (3) 

which considers both the mode shape and mode composition, 

or in other words, both the activity of the state variable in mode 

and its contribution to the mode.  

From initial state x0, responses of each state variable are 
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where Bki=ψix0ϕki is named the contribution factor, which 

evaluates how much mode i is excited in the k-th state variable. 

Based on (4), here is an interpretation of PFs defined in (3):  

The participation factor represents the size of the modal 

dynamics with a state variable when only that state variable is 

perturbed [4]. 

The PF can be viewed as the contribution factor Bki when 

  0 0 1| 0k k= =x e .  (5) 

The response of the system for the k-th state variable will be 
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This interpretation of the PF is extended in [3-7] as well as 

in the rest of this paper. 

B. Normal Form Theory and Nonlinear PFs 

The normal form method is a powerful tool to analyze 

nonlinearities of desired orders, and its idea is to transform a 

nonlinear system to a linear system through a nonlinear 

coordinate transformation. Theoretically speaking, the normal 

form method can be conducted for any order, but the 

nonlinearity of the 2nd order is widely considered [5]. 

Apply Tayler expansion to (1) at its stable equilibrium and 

keep the 1st order and 2nd order terms as shown in 
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where H is the Hessian matrix. Apply transformation x=y. 

The system in y-space becomes 
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where C
i 

pq  are the coefficients of 2nd order terms after the 

transformation. In order to obtain a linear system, a nonlinear 

coordinate transformation from y=h(z) is introduced [2]: 
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Plug (9) into (8) to eliminate all 2nd order terms, and then the 

system in z-space becomes a formally more linear system, 

whose nonlinearities only appear on terms of the 3rd order or 

higher. The expressions in x, y and z space are [3] 
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By the interpretation in (6), let x0 = ek, and the initial state zi0 

can be approximated by 
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Substitute (11) into (10). The system response becomes [4]: 

 

( )

2 2

1 1

2 2 2

2 2 2 2

( )

( )

( )( )

p qi

n n n
tt

k ki kpq

i p q p

ki ki ik ikk ki kiNL

kpq kpq pk pkk qk qkk

x t p e p e

p p p

p

 +

= = =

= +

= + = +

= + +

 

  

    

  (12) 

where 
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In (12), the p2ij is the nonlinear PF of state k in mode i. Notice 

that pki is the linear PF, so the nonlinear PF p2ki can be viewed 

as the sum of the linear PF and an extra term p2ijNL. As for the 

p2kpq, it is related to the participation of the state in the resonance 

mode λp + λq, and is usually ignored [5]. This paper will discuss 

this ignored resonance mode in detail in section III. 

C. Other Participation Factors 

In [8] and [9], an extended PF considering a set of initial 

states is proposed as  
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where Sk is the set of the initial states that the k-th state variable 

can take in those initial states, and “(l)” indicates the l-th value 

of the set Sk. It evaluates the average linear contribution over a 

set Sk of the initial states. 

This definition is extended to the nonlinear PF in [9] to be 

related to initial states and the excitation energy when t = 0.  

III. CONNECTION BETWEEN LINEAR AND NONLINEAR PFS 

The inconsistency between linear and nonlinear PFs is 

caused by three factors, which will be discussed as follows. 

A) On Scaling on the Initial State 

The linear PF defined in (3) based on model (2) is 

dimensionless and does not depend on the size of the initial 

state. Although the interpretation (6) involves the initial state, 

its effect can be eliminated after normalization. For instance, in 

(5), if the amplitude of the initial state is scaled by αk, i.e. (15), 

the response will also be scaled by αk in (16).  

  0 0 | 0k k k k = =x e   (15) 

 
ki ki k ki ikB p  = =    (16) 



Ref [7] assumes the scaling factor αk = α for any k. This 

means that state variables are assumed to have the same size of 

excitation.  There is 

 
ki k ki ik ki ikp   =  =    (17) 

The scaling factor can be canceled after the normalization of 

all PFs for any α. Thus, the influence from the initial state is 

eliminated. 

However, for a nonlinear PF defined by, e.g., (18), such a 

scaling factor cannot be eliminated by normalization.  
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Notice that for generator k, a nonlinear PF changes with α 

after the normalization. When α→0, p2ki→pki. Papers [3-7] 

simply assume α = 1. This paper will address the influence from 

the scaling on the initial state. 

B) On Discontinuity Between Linear and Nonlinear PFs 

Both the linear PF and existing nonlinear PFs are computed 
based on the system model and are invariant in time. Thus, when 
studying the dynamic process of damping an oscillation caused 
by a large disturbance, we have to switch from a nonlinear PF to 
the linear PF when the oscillation amplitude becomes small 
enough. This results in a discontinuity between two PFs and a 
practical problem: Which PF to trust? An engineering solution 
could be to calculate both and choose the nonlinear or linear PF 
by whether the oscillation exhibits a strong nonlinearity or 
resonance.  

The introduction of the scaling factor α seems to be able to 

address this problem by introducing adjusting weights 

depending on the value of α for linear and nonlinear PFs from 

the comparison of (17) and (18). A nonlinear PF is more 

emphasized than a linear PF with a larger α when, for example, 

the system state is far from the stable equilibrium. However, 

consider a scenario that the system state oscillates starting from 

the edge of the domain of attraction, and is gradually damped 

to reduce its amplitude, and be closer and closer to the stable 

equilibrium. Consistency between nonlinear and liner PFs will 

be important for designing a unified control strategy based on 

PFs. Thus, it is desired to satisfy (19) to make a nonlinear PF 

smooth transition to the linear PF. Thus, the time of the 

transitioning will have to be concerned. 
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C) On Resonance Modes 

In (12), p2kpq is considered the participation of state xk in a 

mode of resonance between λp and λq, which is usually ignored 

in small-signal stability analysis and control even if it is 

sometimes evaluated as an additional index to explain 

resonance phenomena [5, 6]. Existing works focus on the linear 

or nonlinear PF for each linear mode λk. However, the study in 

[11] shows that resonance modes can be easily observed from 

measurements, especially under large disturbances and may 

impact the system stability. 

IV. PROPOSED TIME VARIANT NONLINEAR PFS 

ADDRESSING RESONANCES 

To address the three factors in section III, two steps are taken. 

First, introduce a time decaying factor to address factors 1 and 

2. Second, use convolution to define a nonlinear mode 

considering the influence from resonances. Finally, time-

variant nonlinear PF (TNPF) is obtained. 

A. Time Decaying Factor 

Based on the interpretation (6) and discussion in III-A, the 

participation factor can be viewed as the excitation energy of 

the selected mode i when only a certified generator k is 

perturbed with a time decaying factor it

ke


  rather than a 

constant. Its value is calculated by 
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Equivalently, its value can also be estimated from a set of 

initial states by using the method of the extended PF 
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The set Sk can be obtained from the history measurement data. 

From the discussion in III-A, the value of the new defined PF 

depends on the value of αk. Obviously, when t = 0 and αk = 1, 

the new defined PF equals the nonlinear PF in (12). Without 

better knowledge, αk=1 is advised and will be used in the case 

study of this paper.     

B. Resonance Modes and Nonlinear Modes 

To include the 2nd order resonance terms in (12), the concept 

of mode needs to be extended. In the conventional definition, 

eigenvalue λk (together with its conjugate) corresponds to one 

linear mode; the resonance mode corresponds to λp+ λq, 

resulting from the 2nd nonlinearity. For 2nd order resonance 

terms, it would be valuable to define a nonlinear mode to reflect 

the contribution of 2nd order resonances. 

 

Definition 1 (Nonlinear Mode) A nonlinear mode µj is the 

weighted sum of all linear modes and resonance modes whose 

frequencies belong to a given range of (fj,lower fj,upper]. 
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where wi is the weight, fj,lower and fj,upper are the lower and upper 

frequency limit, respectively. For a certain state variable, it is 

easy to plot the spectrum of nonlinear PF for linear modes and 

the PF for resonance modes. Then the spectrum can be divided 

into several frequency intervals. The sum of linear modes and 

resonance modes in each interval is viewed as one nonlinear 

mode µj.  

For the weights wi, a relatively reasonable way is to use the 

normal distribution. It is known that a weighted moving average 

is a convolution. In other words, for a certain frequency fj = 

(fj,lower + f j,upper)/2, the nonlinear mode will be 



 

2

0

2

( )

2

( , ) ( )

{Im( )}

( ) {Im( )}

0 others



 

 



 



+

=

 


=  +




i

p q

j j

t

ki i

t

kpq p q

N f g f df

p e f

g f p e f

  (23) 

g(f) is the spectrum of linear modes and resonance modes for 

a certain state variable.  

C. Time-variant Nonlinear PF (TNPF) 

Part A) introduces the time decaying factor to connect linear 

and nonlinear PFs. In part B), the convolution operation is used 

to include the influence of resonance modes. To take both 

advantages of the two aspects, the time-variant PFs are defined 

as 
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where 
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Pg(f) presents a participation-factor spectrum for linear 

modes and resonance modes. P2ki(t) is the time-variant PF for 

the linear mode, and P2kpq(t) is the time-variant PF for the 

resonance mode.  

Fig. 2 illustrates the spectrum of nonlinear PFs and TNPFs. 

For convenience, t = 0 here.  Since the TNPFs can be viewed as 

the convolution of nonlinear PFs and the normal distribution, 

the standard deviation σ will be critical to the performance. It is 

related to the resolution of the measurement and control side. 

The detailed study of this is out of scope in this paper, and the 

case study shows that σ = 0.1 is a good selection.  

In (25), P2kpq(t) contains 3rd order and 4th order decaying 

terms because of ψpkk and ψqkk. For simplification, those terms 

are all approximated by the 2nd order decaying terms, since ψpkk 

and ψpkk are usually much smaller than ψpk and ψqk.  All PFs are 

summarized in TABLE I. 

TABLE I.  COMPARISON OF DIFFERENT PFS 

Types 
Time 

Performance 
System 
model 

Mode Formula 

Linear PF Constant Linear Linear (3) 

Nonlinear PF Constant Nonlinear Linear (12) 

TNPF Time-variant Nonlinear Nonlinear (24) 

 

V. CASE STUDY 

Kundur’s two-area system is used for the test, whose 
topology is shown as  

  

Fig. 1. Kundur’s two-area system [1]  

The linear and nonlinear PFs are shown in Table II. 1.11 Hz 
and 1.61 Hz modes are local modes, where the linear and 
nonlinear PFs are almost the same. 0.59 Hz mode is the inter-
area mode, for which the ranking of 4 generators is different. 
Generator 3 is the second most important generator by linear 
PFs, while generator 4 is the second by nonlinear PFs. Since they 
are all time-invariant constants, without the TNPF, the system 
operator will have to choose between generators 3 and 4 for a 
control action.  

TABLE II.  LINEAR AND NONLINEAR PFS FOR TWO-AREA SYSTEM 

Gen. 
0.59 Hz 1.11 Hz 1.61 Hz 

Linear 
PF 

Nonlinear 
PF 

Linear  
PF 

Nonlinear 
PF 

Linear  
PF 

Nonlinear  
PF 

1 1.00 1.00 2.05×10-3 2.06×10-3 0.13 0.11 

2 0.05 0.02 6.20×10-3 5.97×10-3 1.00 1.00 

3 0.86 0.37 0.80 0.81 2.86×10-3 2.76×10-3 

4 0.62 0.40 1.00 1.00 8.31×10-3 7.69×10-3 

 

To show the performance of the TNPF, first select generator 

1. Fig. 2 shows the spectrum about its PFs, nonlinear PFs and 

TNPF (t = 0). The blue triangles and black squares are the linear 

and nonlinear PFs for the linear modes. Notice that they share 

the same frequency. The red circles show the nonlinear PFs for 

the resonance mode. This system is carefully designed to make 

the 1.11 Hz mode resonant with the harmonic mode of 0.59 Hz 

mode. The red curve shows the convolution of the normal 

distribution.  

  

Fig. 2. Specturm of generator 1 



 

Fig. 3. Spectrum on all four generators  

Next, the TNPFs (t = 0) for all generators are shown in Fig.3. 
It is obvious that four nonlinear modes are obtained through 
convolution. The nonlinear mode of 2.2 Hz is the resonance 
mode, and it comes from the harmonic terms of 1.11 Hz mode 
and the interaction between 1.61 Hz mode and 0.59 Hz mode.  

On the 0.59 Hz inter-area mode, the difference between 
linear and nonlinear PFs in values results in a discontinuity. The 
proposed TNPF can address this problem. The result of TNPFs 
is shown in Fig. 4. The TNPF is the same as the nonlinear PF 
when t = 0. With the increasing of t, due to the decaying terms, 
the TNPF becomes closer and closer to the linear PF, which 
coincides with the fact that for a stable system, the system will 
become more and more linear after the fault. There is no 
resonance mode near 0.59 Hz, so the P2kpd(t) for 0.59 Hz is 
almost zero. 

  

Fig. 4. The trajectories of PF, nonlinear PF and TNPF for 0.59 Hz mode 

The 1.11 Hz mode has a different situation. For the 1.11 Hz 
linear mode, the linear and nonlinear PFs will share almost the 
same result (in TABLE II). However, for the 1.11 Hz nonlinear 
mode, the resonance mode will significantly influence the final 
result, which can be viewed from the resonance mode (1.1 Hz 
red circle) in Fig.2. The TNPFs of the 1.11 Hz nonlinear mode 
in the time domain are shown in Fig.5. The TNPF for generator 
1 is much larger than the linear or nonlinear PF when t = 0 due 
to the resonance mode. With the time increasing, the resonance 
mode has a large damping term, so the value of TNPF decreases 
fast. The stable result will be the same as the linear PF. 

 

Fig. 5. The trajectories of PF and TNPF for 1.11 Hz mode 

VI. CONCLUSION 

This paper has discussed the inconsistency between linear 
PFs and nonlinear PFs, which are caused by three factors. To 
address those factors, the TNPF is proposed. The time decaying 
factor in TNPF is used to allow a smooth transition from the 
NPF to the linear PF for an oscillating power system subject to 
a large disturbance and to address resonances. By introducing 
the convolution operation, nonlinear modes can be defined to 
calculate the TNPF. The case study on a two-area system has 
demonstrated the performances of the new PFs in ranking 
generators by their participations in power system oscillations 
energized by a large disturbance. Our future work will apply the 
proposed TNPF to power system stability monitoring and 
control under large disturbances when nonlinearities in power 
system oscillations cannot be ignored [12]-[14]. 
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