# Time-variant Nonlinear Participation Factors Considering Resonances in Power Systems 

Tianwei Xia, Kai Sun<br>The University of Tennessee, Knoxville

## Background:

- The participation factor ( $\mathbf{P F}$ ) is a useful index to evaluate the contribution of each generator (or a state variable) to an oscillation mode.
- A nonlinear participation factor (NPF) is defined to evaluate the participation of a state variable into modal dynamics following a large disturbance, that gives considerations to nonlinearities up to a desired order.



## Problem Description:

- The scaling factor $\alpha$ can be canceled after the normalization of PFs but not for the NPFs :

$$
p_{k i}=\alpha \phi_{i i} \Psi_{i k} \quad p_{2 k i}=\alpha \phi_{k i} \psi_{i k}-\alpha^{2} \sum_{p=1}^{n} \sum_{q=p}^{n} h 2_{p q}^{m} \psi_{p k} \psi_{q k}
$$

- Discontinuity Between Linear and Nonlinear PFs:

$$
\lim _{t \rightarrow \infty} p_{2 k i} \neq p_{k i}
$$

- The participation of the state in the combination is usually ignored in existing literature:

$$
p_{2 k p q}=\phi_{2 k p q}\left(\psi_{p k}+\psi_{2 p k k}\right)\left(\psi_{q k}+\psi_{2 q k k}\right) \approx 0
$$

Table 1. Comparison of different PFs

| Types | Time <br> Performance | System Model | Mode |
| :---: | :---: | :---: | :---: |
| PF | Constant | Linear | Linear |
| NPF | Constant | Nonlinear | Linear |
| TNPF | Time-variant | Nonlinear | Nonlinear |

## Proposed Time-variant NPF:

- Replace scaling factor by a time decaying factor.
- Propose a nonlinear mode considering the influence from combination modes.
- Define the Time-variant NPF (TNPF) as:

$$
\begin{aligned}
& p_{2}\left(t, f_{\text {targegt }}\right)=\int_{0}^{\infty} N\left(f_{\text {trregt }}, \sigma^{2}\right) p_{g}(f) d f \\
& p_{g}(f)=\left\{\begin{array}{cc}
p_{2 k i}(t) & f \in\left\{\operatorname{Im}\left(\lambda_{i}\right)\right\} \\
p_{2 \text { kpq }}(t) & f \in\left\{\operatorname{Im}\left(\lambda_{p}+\lambda_{q}\right)\right\} \\
0 & \text { others }
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{gathered}
p_{2 k i}(t)=\left(\alpha_{k} e^{\lambda_{t} t}\right) \phi_{k k} \psi_{i k}-\phi_{k i} \sum_{p=1}^{n} \sum_{q=p}^{n}\left(\alpha_{p} \alpha_{q} e^{\left(\lambda_{p}+\lambda_{q}\right) t}\right) h 2_{p q}^{m} \psi_{p k} \psi_{q k} \\
p_{2 k p q}(t)=\left(\alpha_{p} \alpha_{q} e^{\lambda_{p} t+\lambda_{q} t}\right) \phi_{2 k p q}\left(\psi_{p k}+\psi_{2 p k k}\right)\left(\psi_{q k}+\psi_{2 q k k}\right)
\end{gathered}
$$

Time decaying factor: $\quad \alpha_{k} e^{\lambda_{t} t} \quad \alpha_{p} \alpha_{q} e^{\left(\lambda_{p}+\lambda_{q}\right) t}$
Nonlinear mode: $\quad p_{2}\left(0, f_{\text {tarest }}\right)$

## Key Results and Conclusions:

- Tested on a two-area system.
- By introducing the convolution method, the nonlinear modes can be defined to calculate the TNPF (Fig. 1).
- The time decaying factor in TNPF allows a smooth transition from the NPF to the linear PF for an oscillating power system subject to a large disturbance and also addresses resonances (Fig. 2).
- Conclusion: TNPF can address the existing problems with PF and NPF.


Fig. 1. Spectrum of generator 1


Fig. 2. The trajectories of PF, NPF and TNPF for 0.59 Hz mode

[^0]
[^0]:    . Tianwei Xia, Kai Sun, "Time-variant Nonlinear Participation Factors Considering Resonances in Power Systems," IEEE PES General Meeting, Denver, CO, July 17-21, 2022

