

Semi-Analytical Electromagnetic Transient Simulation Using Differential Transformation

Min Xiong¹, Rui Yao², Yang Liu¹, Kai Sun¹, Feng Qiu² ¹ The University of Tennessee, Knoxville ² Argonne National Laboratory

INTRODUCTION

Background: EMT simulation could capture more detailed fast dynamics. However, simulation of a large-scale power system with full EMT models is very time-consuming because of the required tiny time step at µs scale and high system dimension in three-phase frame.

Motivation: To speed up state-space-based EMT simulations, this paper proposes a Differential Transformation based semi-analytical method that repeatedly utilizes a high-order semi-analytical solution of the EMT equations at longer time steps.

Differential Transformation Method

Considering a smooth function f(t), its k^{th} order DT is defined as:

Table I. Differen	tial Transform Formulae			
Original function	Transformed function			
f(t) = c #1	$F(k) = c\eta(k), \ \eta(k) = \begin{cases} 1 & k = 0 \\ \end{cases}$			
<i>c</i> is constant	$0 k \neq 0$			

$$F(k) = \frac{1}{k!} \left[\frac{d^k f(t)}{dt^k} \right]_{t=t}$$

Also, from the Taylor series, we have:

$$f(t) = \sum_{k=0}^{\infty} F(k) (t - t_0)^k$$

Final semi-analytical solution:

$$f(t) \approx \sum_{k=0}^{i} F(k) \left(t - t_0\right)^k$$

#2

$$f(t) = cg(t)$$
 $F(k) = cG(k)$

 #3
 $f(t) = g(t) \pm h(t)$
 $F(k) = G(k) \pm H(k)$

 #4
 $f(t) = g(t)h(t)$
 $F(k) = \sum_{m=0}^{k} G(k)H(k-m)$

 #5
 $f(t) = \frac{dg(t)}{dt}$
 $F(k) = (k+1)G(k+1)$

 #6
 $g(t) = \cos(h(t))$
 $F(k) = \sum_{m=0}^{k-1} \frac{k-m}{k} G(m)H(k-m)$
 $G(k) = -\sum_{m=0}^{k-1} \frac{k-m}{k} F(m)H(k-m)$

EMT Models

- Voltage-behind-reactance synchronous generator model
- SEXS exciter model
- TGOV1 turbine-governor model
- Pi section represented transmission line model
- Constant R-L-C represented load or shunt model

Fig.1 A serial resistor-inductor circuit

$$\begin{array}{c} C \\ \hline v_2 \end{array} \right) \left[\begin{array}{c} \hline i_2 \end{array} \right]$$

 $\frac{di_1}{dt} = L^{-1}(v_{11} - v_{12} - Ri_1)$

Fig.2 A grounding capacitance circuit

TABLE II. Comparison Between Different Methods

Frror	Moc Eu	Modified Euler		4 th order Runge-Kutta		DT (30th order)		Trapezoidal- rule	
(p.u.) Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	
10-2	1.0	1045	10	200	330	53	400	92	
10 ⁻³	0.5	2100	5	360	306	57	400	230	
10-4	0.5	4215	3	550	284	62	400	600	

M. Xiong, R. Yao, Y. Liu, K. Sun, F. Qiu, "Semi-analytical electromagnetic transient simulation using differential transformation," *International Conference on Smart Power & Internet Energy Systems*, Beijing, China, Dec. 2022.

