

Wide Area Power System Damping Controls with Network Communication Delays

Yichao Wang, Fatima Taouserr, Kevin Tomsovic, Seddik M. Djouadi Department of Electrical Engineering and Computer Science The University of Tennessee, Knoxville, TN, USA

Introduction

- In this poster we propose a new mathematical method to estimate the maximum allowed communication delay that does not violate the stability and performance of the power system.
- This method allows us to handle continuous and discrete dynamics as two pieces of the same framework, such that the system will switches between a continuous-time subsystem (when the communication occurs without any interruption) and a discrete-time subsystem (when the

communication fails) by introducing time scales theory.

Method $\mu(t_2) = \sigma(t_2) - t_2$ Switched system Time scales $t_1 \quad \sigma(t_1)$ $x^{\Delta}(t) = \begin{cases} (A + BK)x(t), & t \in \bigcup_{i=0}^{\infty} [\sigma(t_i), t_{i+1}) \\ \\ \left(\frac{e^{A\mu(t)} - I}{\mu(t)}\right) (I + A^{-1}BK) x(t), & t \in \bigcup_{i=0}^{\infty} \{t_{i+1}\} \end{cases}$ $\sigma(t_2)$ $\tau(t_1) = t_2 - \sigma(t_1)$ (1) Receiving perfect information and controller is evolving Stability Criteria $\tau(t_i) = t_{i+1} - \sigma(t_i)$ (2) Not receiving perfect information (delay) $\|e^{(A+BK)\tau(t_i)} \left[I + \left(e^{A\mu(t_i)} - I\right)(I + A^{-1}BK)\right]\| < 1$ and controller is hold on

 $\mu(t_i) = \sigma(t_i) - t_i$

Case study

Simulink test result: when t =0.2s and t =0.5s, changing the time of the delay

Conclusion

A stability criteria has been derived to estimate bounds of the communication loss duration, which guarantees the stability of the system.

Future work

• Test stability criteria in larger system with considering communication failure.

