

Active Power Filtering Capability of a 10 kV SiC MOSFET-Based Asynchronous Microgrid Power Conditioning System

2023 CURENT Industry Conference Apr. 2023

Dingrui Li¹, Cheng Nie¹, Xingxuan Huang¹, Min Lin¹,

Fred Wang^{1,2}, Leon M. Tolbert¹

¹Min H. Kao Department of Electrical Engineering & Computer Science, the University of Tennessee, Knoxville, TN, USA ²Oak Ridge National Laboratory, Oak Ridge, TN, USA

Asynchronous Microgrids (ASMGs) with PCS

- An ASMG is connected to the main grid through a power conditioning system (PCS)
- PCS can bring numerous benefits (dynamic decoupling, etc.)
- 10 kV SiC-based PCS is more advantageous compared with Si-based PCS
- More system-level benefits from 10 kV SiC-based PCS need further investigating
- Active power filtering capability of PCS can be enhanced by 10 kV SiC-based PCS

SiC-Based PCS APF Capability

- Diode rectifiers are the main contributors to grid harmonics
- Odd-order harmonics are dominated
- Grid-side PCS APF based on grid needs in the grid-connected mode
- The microgrid-side PCS can potentially provide APF for the microgrid in both gridconnected and islanded modes

PCS APF Algorithms

- Two five-level, 10kV SiC MOSFET-based modular multi-level converters (MMCs) are used as the PCS
- The harmonic current references of grid-side PCS comes from grid requirements
- Microgrid-side PCS absorbs harmonic currents by achieving zero harmonic impedance

Grid-side PCS control algorithms

Microgrid-side PCS control algorithms

Experiment Setup

- One MMC is applied as the harmonic source
- PCS filters the load harmonic currents

Parameters	Values
DC-link voltage (V _{dc})	12 kV
AC line voltage (V _{ac})	6.8 kV
Load (R _{load} and C _{load})	R _{load} =246 Ω, C _{load} =1.25 uF
Line frequency (f _l)	60 Hz
Arm inductor (L and R _L)	L=90 mH, R_L = 5 m Ω
Control frequency (f _c)	10 kHz

PCS APF testing setup

Testing Results

19th-order harmonics

Acknowledgements

- This work was supported primarily by DOE PowerAmerica program.
- This work made use of shared facilities sponsored by ERC program of the National Science Foundation (NSF) and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program.
- The contributions of EPC Power, Southern Company, Chattanooga Electric Power Board, Wolfspeed and Powerex are also acknowledged.

