

Combinational Rogowski Coil with Enhanced DC Measurement Capability for Double Pulse Test (DPT) Applications

2023 CURENT Industry Conference April 19, 2023

Sadia Binte Sohid¹, Xingyue Tian¹, Han (Helen) Cui¹, Wen Zhang¹, Fred Wang¹, Bernhard Holzinger²

¹The University of Tennessee, Knoxville ²Keysight Technologies

PCB Based Combinational Rogowski Coil

Ref: W. Zhang, S. B. Sohid, F. Wang, H. Cui and B. Holzinger, "High-Bandwidth Combinational Rogowski Coil for SiC MOSFET Power Module," in IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4397-4405, April 2022, doi: 10.1109/TPEL.2021.3127545.

Limited DC Measurement Capability

Proposed Method for DC Improvement in a DPT Circuit

 $I_{SW} \rightarrow$ High Frequency (I_{Decap}) + Low Frequency (I_{Low})

The Probe Layout Model

The Probe Prototype & Frequency Domain Measurement

- ➤ The RC and the Hall sensor are connected in series.
- Used Network Analyzer for the frequency domain measurement.

> Flat gain curve over a wide frequency range

Probe Implement in the DPT Board & Time Domain Measurement

- > The RC coil is placed inside the power loop.
- > The hall sensor is placed outside of the power loop.
- > There is no increase in the power loop parasitic with the inclusion of the Hall sensor.

Experimental Setup

Acknowledgements

This work made use of shared facilities sponsored by ERC program of the National Science Foundation (NSF) and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

