

Semi-Analytical Electromagnetic Transient Simulation Using Differential Transformation

2023 CURENT Industry Conference

Apr. 2023

Min Xiong¹, Rui Yao², Yang Liu¹, Kai Sun¹, Feng Qiu²

1 Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA 2 Argonne National Laboratory, Lemont, IL, USA

Introduction

	Transient stability simulation	Electromagnetic transient simulation		
Time step	Milliseconds	Microseconds		
Model	Positive-sequence, three-phase balanced model	Detailed three phase model		
Voltages and currents	Phasor value	Instantaneous value		
Dynamics of interest	Slower dynamics, e.g., electromechanical interactions among generators	Fast dynamics, e.g., electromagnetic interactions among power electronics devices		
Frequency	Power frequency	Wide range of frequency		
Advantages	Fast and efficient	Capture detailed fast dynamics, simulate unbalanced faults		
Disadvantages	Suitable only for low frequency dynamics	High computation cost		

[1] J. Mahseredjian, V. Dinavahi and J. A. Martinez, "Simulation Tools for Electromagnetic Transients in Power Systems: Overview and Challenges," *IEEE Trans. Power Del.*, vol. 24, no.3, pp. 1657-1669, July 2009.

State-space EMT simulation

State-space method

x is the state variables vector, $\dot{x} = Ax$ u is the system input vector,y = Cxy is the system output vector.y = Cx

$$\dot{x} = Ax + Bu \tag{1}$$
$$y = Cx + Du$$

Work in this paper:

Based on **state-space-represented** EMT simulations, this paper proposes a **semi-analytical-solution** method that repeatedly utilizes a high-order approximate solution of the EMT equations at **longer time steps**.

[2] N. R. Watson and J. Arrillaga, "Power systems electromagnetic transient simulation," Inst. Eng. Technol. Power and Energy, ser. 39, 2007.

Differential transformation method

Considering a continuous function f(t), the k^{th} order differential transform (DT) of f(t) is defined by $F(k) = \frac{1}{k!} \left[\frac{d^k f(t)}{dt^k} \right]_{k=0}$ (3)

Also, from the Taylor series

$$f(t) = \sum_{k=0}^{\infty} F(k) (t - t_0)^k$$
 (4)

Replace all the variables in equations by their Taylor series composed of DT and equal the like terms of $(t-t_0)^k$ in the equation, then linear equations of different order DTs can be established.

Original continuous functions kth order DT

f(t) g(t) h(t)

F(k) G(k) H(k)

$$f(t) = c$$

$$f(t) = cg(t)$$

$$f(t) = cg(t)$$

$$f(t) = g(t) \pm h(t)$$

$$F(k) = cG(k)$$

$$F(k) = G(k) \pm H(k)$$

$$f(t) = g(t)h(t)$$

$$f(t) = g(t)h(t)$$

$$f(t) = \frac{dg(t)}{dt}$$

$$f(t) = \sin(h(t))$$

$$g(t) = \cos(h(t))$$

$$F(k) = CG(k)$$

$$F(k) = CG$$

Finally, any state variables in the equation can be approximated by their DTs up to the kth order, e.g. $f(t) \approx \sum_{k=0}^{i} F(k) (t - t_0)^{k}$ (5)

[3] Y. Liu and K. Sun, "Solving power system differential algebraic equations using differential transformation," *IEEE Trans. Power Syst.*, vol. 35, no. 3, pp. 2289-2299, May. 2020.

Case study

Case study

(1) Comparison between the differential transformation with different orders

Error	DT (10 th order)		DT (20 th order)		DT (30 th order)		DT (40 th order)	
(p.u.)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)
10 ⁻²	72	81	200	58	330	53	412	58
10 ⁻³	58	100	180	64	306	57	382	62
10-4	46	1162	158	73	284	62	365	68

(1) High order DT could enlarge the time step.(2) When the order is too high, the burden of computing high order terms decreases the overall efficiency.

(2) Comparison between the 30th order differential transformation with conventional numerical methods

	Error	Modified Euler		4 th oder Runge kutta		DT (30 th order)		Trapezoid al-rule		
	(p.u.)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	Time step (µs)	Time cost (s)	(
	10 ⁻²	1.0	1045	10	200	330	53	400	92	
	10 ⁻³	0.5	2100	5	360	306	57	400	230	
	10-4	0.5	4215	3	550	284	62	400	600	
7	>									

- 1) The DT based approach enables large time steps and thus reduces time costs.
- (2) Trapezoidal-rule method is A-stable and enables large time step, but iterations are required to achieve high accuracy, and increases time cost.

Acknowledgements

This work was supported in part by the ERC Program of the NSF and U.S. DOE under grant EEC-1041877 and in part by the Advanced Grid Modeling (AGM) program of U.S. DOE Office of Electricity under grant DE-OE0000875.

