Temperature Sensitive Electrical Parameters Selection for 10 kV SiC Power Module

Min Lin¹, Ruirui Chen¹, Dingrui Li¹, Leon M. Tolbert¹, Fred Wang¹,², Hua Bai¹
¹CURENT, Min H. Kao Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, USA
²Oak Ridge National Laboratory

mlin12@vols.utk.edu, rchen14@vols.utk.edu, dli35@vols.utk.edu, tolbert@utk.edu, fred.wang@utk.edu, hbai2@utk.edu

Abstract—This paper presents temperature sensitive electrical parameters (TSEPs) selection for a 10 kV silicon carbide (SiC) MOSFET power module. Static parameters including on-state resistance and threshold voltage are introduced. A double pulse test (DPT) platform is built to test the power module on a hotplate, and the switching transient behavior in a temperature range from 25°C to 125°C is analyzed in detail. Various parameters during turn on and turn off are measured and compared based on their temperature linearity and sensitivity. Load current and gate resistance impacts on measurement are discussed, as well as comparisons to low voltage SiC MOSFETs.

Keywords—10 kV SiC power module, TSEP, double pulse test

I. INTRODUCTION

Excessive heat and thermal cycling are a major cause for device degradation [1] and failure. Therefore, to protect switching devices from overheating, junction temperature monitoring is crucial in health management. One method to measure device junction temperature is to embed a negative temperature coefficient (NTC) resistor close to the die in the module package. However, direct temperature measurement is often inaccessible for most power modules.

TSEP is another popular method because it is easily measurable and offers fast response. It can monitor the device online with a certain level of precision. It does not affect the normal operation of the device, nor requires complex circuits. TSEP is widely discussed in 1200 V IGBT power modules [2] [3]. In [4], voltage overshoot on bus parasitic inductance due to turn off di/dt is measured to monitor the temperature. In [5], turn off di/dt is also used as a TSEP, where voltage overshoot on leakage inductance of the Kelvin source is measured. Unlike IGBTs, turn off di/dt is not temperature dependent for SiC MOSFET [6], thus other TSEPs are adopted instead.

On-state resistance is calculated in [7] for temperature estimation of a 1.2 kV SiC MOSFET, which uses a printed circuit board (PCB) embedded Rogowski coil for measuring drain-source current and a two diode circuit for measuring drain-source voltage. Turn off delay time is measured in [8], but a large gate resistance is used to increase its sensitivity which significantly increases the switching loss. Reference [9] offers a comparison between threshold voltage, on state resistance, and switching transients of 1.2 kV SiC MOSFET from different manufacturers. TSEP of 3.3 kV SiC MOSFET are presented in [10], and its intrinsic material behaviors are explained by numerical expressions.

Few papers have discussed TSEP of 10 kV SiC devices. A model of 10 kV discrete device switching behavior under different temperature is presented in [11]. However, it does not identify a suitable TSEP for overheating protection or device health monitoring. Test results of 10 kV power modules are given in [12], [13]; they mostly focus on general performance, such as on state resistance, switching loss, and short circuit withstand time. In this paper, potential TSEPs of a 10 kV 100 A SiC MOSFET power module are presented based on static test and DPT results. Its temperature sensitivity and linearity are discussed in detail for future implementation.

The rest of the paper is organized as follows. Section II introduces TSEPs based on static characterization. Section III covers TSEPs based on switching behavior from DPT results. The impacting factors such as load current and gate resistance are presented in Section IV. Section V draws the conclusion.

TABLE I - PARAMETERS OF THE XHV-9 10 kV SiC MOSFET Module

<table>
<thead>
<tr>
<th>Static parameters</th>
<th>Wolfspeed XHV-9 SiC MOSFET Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Breakdown voltage</td>
<td>10 kV @ $V_{gs} = 0$ V, $I_d = 6$ mA</td>
</tr>
<tr>
<td>On state resistance</td>
<td>50 mΩ @ $V_{gs} = 15$ V, $I_d = 90$ A, $T_j = 25$ °C</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>175 °C</td>
</tr>
</tbody>
</table>

II. STATIC CHARACTERISTICS

The power module investigated is a Wolfspeed XHV-9 10 kV SiC MOSFET half bridge module. Each device has six dies in parallel; the detailed specifications are given in Table I. Static tests are conducted using curve tracer Keysight B1505A to measure forward conduction, reverse conduction, and transfer characteristics. Junction capacitance which includes C_{gs}, C_{ds}...
and C_{gd} values remain stable across a wide temperature range, so they are not normally considered for TSEPs.

A. Forward Conduction Characteristics

Curve tracer is used to exert controlled duration and magnitude of gate source and drain source voltage pulses to the power module. The forward conduction test is conducted by restraining V_{ds} to less than 25 V and i_{ds} to less than 110 A, V_{gs} is swept from 1 V to 15 V by 1 V steps. In this way, the full operation range of normal working condition is measured without exposing the power module to excessive power and current. The forward conduction curve at 25°C is presented in Fig. 1. The same test is repeated under 25°C, 50°C, 75°C, 100°C and 125°C by placing the power module on a hotplate with controlled temperature.

Based on the forward conduction curve, the ON-resistance at different temperatures when V_{gs} is 15 V are summarized in Fig. 3. It increases with higher temperature, but the increment is not uniform. Threshold voltage V_{th} can be extracted from the data. It decreases with increasing temperature because of the positive temperature dependence of the intrinsic carrier concentration. It is verified with measurement shown in Fig. 4.

B. Reverse Conduction Characteristics

Reverse conduction curve is measured in a similar process of the forward conduction curve. V_{gs} is stepped from 1 V to 15 V with 2 V steps. V_{ds} is limited to -15 V and i_{ds} is restrained to -110 A. The reverse conduction curve at 25°C is presented in Fig. 5. Calculating $R_{ds(on)}$ for different temperatures as shown in Fig. 6, it also increases with the temperature.

C. Transfer Characteristics

In Fig. 7, i_d is measured when $V_{ds} = 10$ V and V_{gs} is stepped from 1 V to 15 V. Transconductance is calculated in Fig. 8; it increases with the temperature when current is less than 40
A. When current is larger than 40 A, it does not change linearly with the temperature.

A. Experimental Test Setup

The DPT platform as shown in Fig. 10 was built to test 10 kV half bridge power module switching characteristics [14]. The key components are described as follows. The dc link capacitor consists of four 2 kV 360 μF capacitors in series connection. The dc link voltage can be adjusted from 0 to 7 kV. Due to the parasitic inductance in the commutation loop, a decoupling capacitor board is used to limit the voltage overshoot. The load inductance is 5 mH. A circuit breaker with three Si IGBTs in series is connected in the main circuit to limit the maximum current in case a short circuit happens during testing. The dedicated gate driver receives control signals and transmits feedback signal by optical fiber, connecting to the controller outside of the high voltage room. This provides high voltage isolation, ensures signal integrity, and personnel safety. The gate driver has desat protection integrated, which protects the power module from short circuit faults. Gate turn on voltage is 15 V and turn off voltage is -5 V. Gate resistance is 5 Ω. The auxiliary power supply that provides power to the gate driver has a 10 kV isolation and 2 pF coupling capacitance [15].

The measurement probes with sufficient bandwidth and isolation are used. Drain source voltage is measured by high voltage differential probe DP20-10k (17.5 kV, 120 MHz). Device current is measured by PEM CWTMlni50HF Rogowski coil (50 MHz). Gate source voltage is measured by TPP1000 Tektronix passive voltage probe (1 GHz).

B. Turn on Delay Time

During turn on delay time, the device is in cutoff region, C_{gs} charges from 0 V to V_{th}. Turn on delay time t_{don} in (1) measures the time when I_d starts to conduct after gate source voltage is applied to the device. Here, V_{cc} is turn on gate voltage, and V_{ee} is turn off gate voltage. R_g is gate resistance.
and \(C_{iss} \) is input capacitance of power module. From previous analysis, threshold voltage drops with increasing temperature, \(t_{don} \) decreases as it takes shorter time for \(C_{gs} \) to charge to \(V_{th} \).

\[
t_{don} = R_g C_{iss} \ln \left(\frac{V_{cc} - V_{ee}}{V_{ee} - V_{th}} \right)
\]

2) **Current Rise Time**

As soon as gate source voltage reaches \(V_{th} \), the device starts conducting. The current rise time \(t_{ic} \) can be derived from (2), where \(I_L \) is load current and \(g_m \) is transconductance.

\[
t_{ic} = R_g C_{iss} \ln \left(\frac{V_{cc} - V_{th}}{V_{ee} - V_{th} - \frac{I_L}{g_m}} \right)
\]

3) **Voltage Fall Time**

Drain source voltage starts to fall from nonconducting high voltage the moment \(V_{gs} \) reaches miller plateau and \(C_{gd} \) starts discharging. Thus, drain source voltage fall time \(t_{vf} \) is given in (3), where \(Q_{gd} \) is gate charge.

\[
t_{vf} = \frac{R_g Q_{gd}}{V_{cc} - V_{th} - \frac{I_L}{g_m}}
\]

\(V_{th} \) has a negative temperature coefficient. \(g_m \) is also affected by temperature, but in this case and unlike the value measured by the curve tracer where drain source voltage equals 10 V, the actual drain source voltage is several kilovolts during switching transient of DPT. Transconductance varies with drain source voltage from 20 V to 7 kV in [16], but its temperature dependency is unknown. Thus, it is difficult to estimate the above parameters’ relation with temperature based on equation only. From test results in Fig. 12, \(t_{don} \), \(t_{cr} \) and \(t_{vf} \) drops linearly with increasing temperature.

\[
\text{Fig. 12. } t_{don}, t_{cr}, t_{vf} \text{ decreases with increasing temperature.}
\]

C. **Turn off transient TSEP**

1) **Turn-off Delay Time**

Turn-off delay time \(t_{doff} \) measures the time from the instant when gate-source voltage drops to the instant when drain-source voltage starts to increase from zero.

\[
t_{doff} = R_g C_{iss} \ln \left(\frac{V_{cc} - V_{ee}}{V_{th} + \frac{I_L}{g_m} - V_{ee}} \right)
\]

As threshold voltage is negatively correlated with temperature, and transconductance is nonlinearly dependent on temperature, it is difficult to derive from equation alone the relation between turn off delay time and the temperature. From

the experiment results in Fig. 13, when \(R_g = 5 \Omega \), turn off delay time has a small variance of less than 5% across the whole temperature range when current is between 16.6 A to 47.8 A. At 7.1 A and 56.9 A, it changes nonlinearly with temperature.

\[
\text{Fig. 13. Turn off delay time at } R_g = 5 \Omega \text{ is similar at different temperatures.}
\]

However, when \(R_g = 2 \Omega \), it increases linearly with increasing temperature in Fig. 14. The values at 7.1 A are significantly smaller than measurements at higher current, and do not follow the general trend.

\[
\text{Fig. 14. Turn off delay time at } R_g = 2 \Omega.
\]

2) **Voltage Rise Time**

The turn-off transient of this 10 kV SiC power module is dominated by load current charging/discharging the device junction capacitances. As the device capacitance is temperature independent, most parameters are not affected by temperature. The voltage rise time has stable duration regardless of the temperature change. In Fig. 15, voltage rise time difference across full temperature range from 25°C to 125°C is less than 4% when load current is less than 20 A. When load current is larger than 20 A, it is less than 5 ns. Voltage slew rate \(dv/dt \) corresponds with voltage rise time and is also temperature insensitive.

The same phenomenon is also observed in voltage overshoot \(V_{os} \) as shown in Fig. 16. It does not show a clear relation to the temperature. From above results, for this 10 kV SiC MOSFET module, only the turn-off delay time at considerable fast switching speed condition, i.e., with small gate resistance (<=2Ω) and considerable load current (>= 10 A), can be a suitable TSEP. Other parameters during turn off are not temperature sensitive or do not follow a linear trend.
This section discusses other factors besides temperature that impact the electrical parameters measured, especially during switching transients. Gate turn on voltage and turn off voltage affect the switching speed and can be controlled in a versatile way with an intelligent gate driver. In this application, the power module is switched on and off by 15 V and -5 V respectively, so gate voltage impact is not investigated.

A. Gate Resistance

It is straightforward that gate resistance has a positive impact on \(t_{\text{don}} \), \(t_{\text{tr}} \), and \(t_{\text{ef}} \) as shown in (1)-(4). Thus, gate resistance can be used to increase temperature sensitivity of these TSEP, so it has a larger variance over same temperature range. It is verified by the test results in Table III where \(R_g = 5 \) Ω and is higher than those measured in Table II where \(R_g = 2 \) Ω.

Table II. Turn On Results At 2 Ω

<table>
<thead>
<tr>
<th>Temperature</th>
<th>(t_{\text{don}}) (ns)</th>
<th>(t_{\text{tr}}) (ns)</th>
<th>(t_{\text{ef}}) (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>67.6</td>
<td>58</td>
<td>200.8</td>
</tr>
<tr>
<td>50 °C</td>
<td>66.5</td>
<td>57</td>
<td>198.8</td>
</tr>
<tr>
<td>75 °C</td>
<td>63</td>
<td>54.4</td>
<td>199.6</td>
</tr>
<tr>
<td>100 °C</td>
<td>62</td>
<td>51</td>
<td>191.6</td>
</tr>
<tr>
<td>125 °C</td>
<td>61</td>
<td>47.8</td>
<td>191.6</td>
</tr>
</tbody>
</table>

B. Load Current

The following data are extracted from DPT waveforms at the same dc voltage 6.4 kV with varying current. During the turn on process, load current does not affect turn on delay time from theoretical analysis in (4). It is verified through test results in Fig. 17, where at the same temperature turn on delay time shows a small variance of less than 10 ns as current increases from 7.1 A to 56.9 A. By contrast, current rise time increases as shown in Fig. 18, while voltage fall time decreases in Fig. 19 with increasing load current.
In this paper, TSEP for the Wolfspeed XHV-9 10 kV SiC MOSFET power module is investigated. On-state resistance and threshold voltage can be extracted as TSEP. Threshold voltage shows better temperature linearity. Turn on TSEPs include turn on delay time, current rise time and voltage fall time, which all have negative temperature coefficients. Only turn on delay time is not affected by load current, while the other two have to be calibrated with current. Their temperature sensitivity can be improved by increasing the gate resistance. Turn off TSEP only has one candidate which is turn off delay time. Voltage rise time and voltage overshoot are not temperature sensitive.

The temperature sensitivity is summarized in Table IV when gate resistance is 5 ohm. Compared with low voltage 3.3 kV, 5 A SiC MOSFET in [10], 10 kV SiC MOSFET power module have the same TSEP of turn on delay time, current rise time and turn off delay time. Turn on current switching rate, which is calculated from current rise time, for a 10 kV, 100 A SiC MOSFET is 1600 A/(ms °C), compared with 328 A/(ms °C) for a 3.3 kV SiC MOSFET. Turn on delay time is also significantly larger in 10 kV device than -18.6 ps/°C of 3.3 kV device. Threshold voltage temperature sensitivity is also higher than 1.2 kV 30A devices at -0.005 V/°C in [9]. Due to limited data available for SiC MOSFET, only a number of TSEPs can be compared. Unlike 3.3 kV and 1.2 kV devices, voltage slew rate dv/dt, voltage overshoot and switching loss during turn off cannot be selected as TSEP.

ACKNOWLEDGMENT

This work was supported primarily by the Advanced Manufacturing Office (AMO), United States Department of Energy, under Award no. DE-EE0009134. The authors thank GE, EPB, ORNL, Southern Company, Wolfspeed, and Powerex for their contribution to the project. This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program.

REFERENCES

TABLE IV. TSEP TEMPERATURE SENSITIVITY

<table>
<thead>
<tr>
<th>TSEP</th>
<th>TSEP Symbols</th>
<th>Temperature Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold voltage</td>
<td>V_{th}</td>
<td>-0.08 V/°C</td>
</tr>
<tr>
<td>Turn on delay time</td>
<td>t_{don}</td>
<td>-106 ps/°C</td>
</tr>
<tr>
<td>Current rise time</td>
<td>t_{cr}</td>
<td>-306 ps/°C</td>
</tr>
<tr>
<td>Voltage fall time</td>
<td>t_{vf}</td>
<td>-149 ps/°C</td>
</tr>
</tbody>
</table>

V. CONCLUSION

This work was supported primarily by the Advanced Manufacturing Office (AMO), United States Department of Energy, under Award no. DE-EE0009134. The authors thank GE, EPB, ORNL, Southern Company, Wolfspeed, and Powerex for their contribution to the project. This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program.