
 Sushma Amara

School of Computing
Clemson University

Clemson, USA

Yi Li
Department of Electrical and Computer

Engineering
Clemson University

Clemson, USA

Cayden Wagner
School of Computing
Clemson University

Clemson, USA

Shuangshuang Jin
School of Computing
Clemson University

Clemson, USA

Zheyu Zhang
Department of Electrical and Computer

Engineering
Clemson University

Clemson, USA

Christopher Edrington
Department of Electrical and Computer

Engineering
Clemson University

Clemson, USA

Abstract — Power electronics converters, as an enabler for
future power and energy system, are heavily used in military
ground vehicle powertrain systems to provide reliable and efficient
power conversion. Virtual prototyping of power electronics
converters using computer-aided modeling and simulation to
create and test power electronics circuits and systems before they
are physically constructed can help engineers to optimize designs,
reduce development time, and lower costs. This paper
demonstrates the effectiveness of developing a High-Performance
Computing (HPC)-based power electronics modeling and
simulation approach to speed up the entirety of simulation time to
support high-speed power electronics-enabled power architecture
for demanding ground vehicle powertrain applications. First, a
multiple power electronics building block (PEBBs)-based model
for the virtual prototyping of power electronics converters is
developed in MATLAB. This is then followed by a parallel
implementation of the same model in Julia utilizing its high-
performance compiled programming language’s fast computing
capability and a variety of supported parallel computing
programming interfaces. Later, more PEBBs are added to the
multi-PEBB model to test the scalability of the parallel simulation.
It is observed that the Message Passing Interface-based parallel
multi-PEBBs simulation in Julia is both fast and scalable without
a noticeable increase in execution times when more PEBBs are
added to the system.

Index Terms— Power Electronics Simulation, High-Performance
Computing, Simulation Software, Faster-Than-Real-Time
Simulation

I. INTRODUCTION
Power electronics converters, as an enabler for future power

and energy system, are heavily used in military ground vehicle
powertrain systems to provide reliable and efficient power
conversion. An essential component in power electronics
converters is power electronics building blocks (PEBBs) which
are known for their high efficiency in controlling and
converting electrical power [1], as illustrated in Fig. 1.

PEBBs are platform-based approaches where basic building
blocks are consistent with one another. PEBBs share defined
functionality, standardized hardware, and control interfaces that

are widely adopted for multiple applications, which result in
high-volume production with reduced efforts needed in
engineering [2]. A PEBB typically includes diodes, transistors,
capacitors, inductors, and resistors that can be used in different
configurations through advanced control algorithms and
switching techniques to create various types of power electronic
circuits such as rectifiers, inverters, and DC-DC converters [3].
PEBB also offers scalability and modularity, making them easy
to integrate into larger systems to create complex power and
energy systems [1].

Fig. 1. Ground vehicle system with power and energy system emphasized,

including energy conversion units enabled by PEBBs.
There are multitudes of research that have been published

that is relevant to power electronics as enablers and on PEBBs
approaches. However, none of the work on PEBB enablers has
been translated to next-generation combat vehicle applications.
In this work, we aim to enable fast virtual prototyping of PEBB-
based power electronics converters for ground vehicle
powertrain systems leveraging the latest high-performance
computing techniques based on some prior work that we have
performed relevant to this area [4-10]. This fast virtual
prototyping of power electronics converters will allow us to
create and test power electronics circuits and systems in a
ground vehicle powertrain system before they are physically
constructed and thus help engineers to optimize designs, reduce
development time, and lower costs.

Liquid Fuel

Engine

Motors/
Generators

Tr
an

sm
iss

io
n

Ac loads

=
=

=
=

H
ig

h
vo

lta
ge

 d
c

bu
s

Power
conversion

system

=
~

=
~

=
=

To other
vehicle

Dc loads

To
grid

Motors

Tr
an

sm
iss

io
n

=
~

=
~ =

~
=

=

PEBBs

High-Performance Computing-based Fast Virtual
Prototyping of Power Electronics Converters for

Ground Vehicle Powertrain Systems

20
23

 N
or

th
 A

m
er

ic
an

 P
ow

er
 S

ym
po

siu
m

 (N
AP

S)
 |

 9
79

-8
-3

50
3-

15
09

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
N

AP
S5

88
26

.2
02

3.
10

31
86

73

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 12:58:21 UTC from IEEE Xplore. Restrictions apply.

 DISTRIBUTION A. Approved for public release: distribution unlimited. (OPSEC 7522)

2

This paper is organized as follows: Section ⅠⅠ gives the
background about the platforms that can be used to simulate
power electronics. Section ⅠⅠⅠ introduces the methodology and
case study engaging the Multi-PEBB Modeling and Simulation
using MATLAB, Julia Channels and Julia MPI. Section Ⅳ
presents the results of various methodologies discussed in
Section ⅠⅠⅠ. Lastly, Section V discusses the future work and
summary.

II. BACKGROUND
There are several simulation platforms that can be used for

the virtual prototyping of power electronics components.
MATLAB is one popular software tool that has many built-in
functions and tools for simulating and analyzing power
electronic circuits [11,12]. One of the advantages of using
MATLAB for simulating PEBBs is its ability to handle
complex mathematical equations and perform simulations for a
wide range of power electronic circuits [13].
MATLAB/Simulink is a graphical simulation tool that allows
engineers to model and simulate power electronics circuits and
systems with a block diagram interface in a virtual
environment, which can save time and reduce costs associated
with physical prototyping [14]. They also offer various
simulation models and analysis toolboxes that can help
engineers to optimize designs and improve the overall
performance of power electronics systems. Its advanced
mathematical capabilities, graphical interface, and built-in
toolboxes make it an ideal platform for simulating complex
power electronic circuits.
 However, simulating PEBBs using MATLAB can present
some challenges in simulation speed, especially when dealing
with large and complex circuits. First, simulating large and
complex PEBBs can be computationally intensive and can take
a long time to complete. This can be especially problematic
when running numerous simulations to optimize circuit design
parameters. Second, the choice of solver can also affect the
stability of the simulation, especially when simulating circuits
with high switching frequencies. Third, large and complex
PEBBs can require a significant amount of memory to simulate,
which can cause issues on computers with limited resources
[15].

To address these issues, in addition to using efficient
modeling techniques, choosing appropriate simulation settings,
and optimizing the code, a more advanced simulation platform
with parallel computing capability is also desired to overcome
the computational constraints that come with MATLAB’s
interpreted language nature and memory-intensive bound for
complex PEBBs simulation.

One solution to address these limitations would be to
develop the simulation in Julia [16]. Julia is a high-
performance, compiled programming language for technical
computing, data science, and machine learning. It was first
introduced in 2012 by a group of scientists, engineers, and
programmers who sought to create a language that combined
the ease of use of Python and the performance of traditional
scientific computing languages like Fortran and C [16].

One of the primary advantages of Julia is its high

performance. Julia is designed to execute code quickly, with a
just-in-time (JIT) compiler that can optimize code on the fly,
resulting in performance that can be comparable to that of
traditional compiled languages like C and Fortran [16]. This
makes it well-suited for computationally intensive tasks, such
as simulations and numerical analysis. Julia’s built-in support
for distributed computing and parallelism allows it to take
advantage of multicore processors or manycore processors for
faster computations [16, 17]. As a result, we chose to develop
our complex PEBB-based power electronics simulation for
ground vehicle powertrain systems in Julia using parallel
computing to achieve accelerated computational speed and
scalability without sacrificing the simulation accuracy.

III. METHODOLOGY

A. Multi-PEBB Modeling and Simulation using
MATLAB/Simulink
We first started the Power Electronics simulation on MATLAB
as a benchmark based on the architecture in Fig. 2. The PEBB
concept with a fixed topology results in a model with similar
intrinsic variables, control variables, and disturbance variables
for various energy conversion scenarios, therefore, generalizing
a model in a universal format of state space equations becomes
possible. In other words, PEBB enables not only a standardized
power electronics hardware but can also be virtually
represented by a generalized model. Hence, one universal
PEBB model can be formed and programmed for later
simulation with paralleled computing. This is beneficial for less
complex and time-efficient modeling and scalable simulation
for power electronics-intensive energy systems.

Fig. 2. Notional power and energy system enabled by PEBBs.

Specifically, based on the derivation of average model and
abc/dq coordinate transformation [18], power electronics
circuit can be defined by differential equations. For individual
energy conversion scenarios with different control schemes
(e.g., rectification, inversion, DC/DC conversion), different
equations can be rearranged to the same format expressed by
(1) where parameters 𝑿""⃑ is for intrinsic variables (e.g., (id, iq,
vDC) as AC currents in the dq domain and DC voltage for
rectifier), 𝒖""⃑ is for disturbance variables (e.g., (vd, vq, iDC) as the
AC input voltages in the dq domain and DC load current for
rectifier). A and B are matrices with various coefficients to
represent power stage parameters (e.g., L and C) and different
control variables (e.g., dd and dq) [18].

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 12:58:21 UTC from IEEE Xplore. Restrictions apply.

 DISTRIBUTION A. Approved for public release: distribution unlimited. (OPSEC 7522)

3

𝑿""⃑ ̇ = 𝑨 ∙ 𝑿""⃑ + 𝑩 ∙ 𝒖""⃑ (1)
Notably, the data through the information communication

channel include DC link voltage from the generator rectifier
PEBB to all load PEBBs (i.e., vDC in Fig. 2), and DC load
current iDC from individual load PEBBs to rectifier PEBB (i.e.,
iDC1, iDC2, iDC3, etc. in Fig. 2).

B. Multi-PEBB Modeling and Simulation using Julia --
Channels

To develop the parallel simulation of PEBBs in Julia, we
implemented each PEBB component as an individual task
running on a separate CPU thread/core. We started with the use
of Julia's built-in advanced programming interface (API) --
Channel to enable the data exchange between each of these
PEBB components. Channels are a type of data structure in
Julia that allow for communication between parallel tasks.
When creating a channel for each PEBB component and using
these channels to communicate, the desired data could be
exchanged between parallel tasks. Each PEBB component
receives its perspective input values from its input channel,
performs the necessary computations, and then sends the output
values to its output channel for a receiving PEBB.

Using channels for PEBB simulation in Julia helps us
simplify the implementation and organization of the simulation
code and theoretically improve its performance through
parallelism. However, it is important to carefully design the
channel communication and task scheduling to avoid potential
issues such as race conditions and deadlocks. To explore the
best channel implementation, we developed three versions of
communication mechanisms adaptively to study the
performance of the parallel multi-PEBB simulation.

1) Channels Implementation with Sequential Communication
Our first attempt was a naïve implementation of parallel

PEBB simulation with sequential communication. Fig. 3
illustrates this process with a (4 load PEBBs+ 1 rectifier PEBB)
simulation using this implementation. Individual PEBBs run on
separate CPU threads/cores and compute in parallel. The
rectifier PEBB exchanges DC-link voltage values with all the
load PEBBs in each time step of the entire simulation length
through channels in Julia which are represented by the arrow
lines in Fig. 3.

Fig. 3. Channel implementation with sequential communication.

Suppose the time taken for the rectifier PEBB to send data to
load PEBB 1 through its respective channel and for load PEBB
1 to read from the channel is denoted as time T1, while the time
taken for load PEBB 1 to send back data to the rectifier PEBB
and read by the rectifier PEBB is denoted as T5. Similarly, the
time taken for the rectifier PEBB to exchange data with other
load PEBBs is denoted as T2 and T6 with load PEBB 2, T3 and
T7 with load PEBB 3, and T4 and T8 with load PEBB 4,
respectively. The total time required for this sequential
communication would be the sum of all times, i.e., ∑ 𝑇!"

!#$. This
parallel implementation is straightforward but inefficient due to
the accumulated communication costs. We regard it as a
baseline implementation with improved performance and
scalability compared to the traditional MATLAB
implementation but still has a large room to improve the
simulation performance with reduced communication cost.

2) Channels Implementation with One-Way Parallel
Communication

As a second attempt, we first identified parallelizable
communication channels on the rectifier PEBB side which do
not necessarily require a specific order and updated the parallel
PEBB simulation with one-way parallel communication. This
allowed us to save significant time that would otherwise be
wasted by processes waiting for preceding operations to
complete in a sequential mode. In this modified model as shown
in Fig. 4, the rectifier PEBB sends data to load PEBBs 1, 2, 3,
and 4 simultaneously in time T1, while the returning
communication still follows a serial implementation where the
load PEBBs send data back to the rectifier PEBB individually
in times T2, T3, T4, and T5, respectively. This modification
was expected to significantly reduce the time required for the
rectifier PEBB to send data to the load PEBBs, leading to a
faster communication speed as ∑ 𝑇!%

!#$.

Fig. 4. Channel implementation with One-Way parallel communication.

3) Channel Implementation with Two-Way Parallel
Communication

To further improve the communication efficiency, our third
attempt was to parallelize the load PEBB side data passing to
realize a two-way parallelization of the communication as
shown in Fig. 5. The rectifier PEBB now sends data to all four
load PEBBs 1, 2, 3, and 4, concurrently, which takes time T1.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 12:58:21 UTC from IEEE Xplore. Restrictions apply.

 DISTRIBUTION A. Approved for public release: distribution unlimited. (OPSEC 7522)

4

Similarly, load PEBBs 1, 2, 3, and 4 return data to the rectifier
PEBB simultaneously in time T2. The original idea was to
further improve the communication efficiency to ∑ 𝑇!&

!#$ as the
total required communication time. However, due to the
runtime differences in computation for each load PEBB, they
may not necessarily reach the time point of data passing on their
own CPU thread/core at the same time, which will result in less
overlap in concurrent communication. The actual
communication time would vary and falls anywhere between
∑ 𝑇!&
!#$ to T1+4*T2, which is not necessarily faster than the

channel implementation with one-way parallel communication.

Fig. 5. Channel implementation with Two-Way parallel communication.

4) Limitation of Simulating PEBBs using Julia -- Channel
Although the parallel PEBBs implementation using the Julia

channels can already improve the multi-PEBB simulation for
its enabled parallelism in computation and reduced cost in
communication, it still has some potential issues that we found
out.

One challenge is that the channel method may not scale well
to very large systems or systems with a high degree of
complexity. This is because the channel method requires
explicit communication between processes, which can result in
a high overhead as the number of processes increases.

Another issue is that the channel method may be prone to
deadlocks, where processes become stuck waiting for messages
that will never arrive. To avoid deadlocks, careful design of the
simulation code is necessary, which may require additional
programming expertise and development effort to explicitly
manage communication between processes.

Despite these challenges, the channel method remains a
viable approach for simulating PEBBs in Julia, particularly for
smaller systems or systems with moderate complexity. One
should carefully consider the tradeoffs between performance,
scalability, and development effort when choosing this
simulation method.

C. Multi-PEBB Modeling and Simulation using Julia -- MPI
The constraints in Julia Channels communication led us to a

natural consideration of an alternative parallel computing
standard Message Passing Interface (MPI), which could enable
efficient communication between a group of processes

(collective communication) without creating specific
communication channels between each pair of processes (point-
to-point communication). This approach would eliminate the
need for multiple channels between the rectifier PEBB and the
load PEBBs, leading to a reduction in resource utilization and
time consumption.

Julia does provide built-in support for MPI, making it a
powerful tool for parallelizing computationally intensive tasks
such as simulating PEBBs. To implement PEBB simulation
using MPI in Julia, the PEBBs need to be split into several
independent processes, each responsible for simulating one
PEBB of the system. These processes can communicate with
each other using common MPI communication paths (as
illustrated in Fig. 6) through the MPI communication functions
such as MPI Broadcast (one of the standard collective
communication techniques being used when one process wants
to send the same information to every other process in the
communicator) and MPI Reduce (another standard collective
communication technique being used which performs a
reduction operation on data across all processes in a specified
communicator and returns the result to a single process.) As
shown in Fig. 7 and Fig. 8, MPI Broadcast was used by the
rectifier PEBB to communicate with the load PEBBs 1, 2, 3,
and 4, where the same message was transmitted from the source
processor to all the target processors. On the other hand, MPI
Reduce was used to combine the data coming from all the load
PEBBs at the rectifier PEBB side. For example, the values 2, 3,
5, and 6 from the load PEBBs 1, 2, 3, and 4 on different CPU
processes are aggregated to form a value of 16 on the process
where the rectifier PEBB sits.

Fig. 6. Channel implementation with collective communication.

The MPI implementation of PEBB simulation in Julia can

significantly improve the speed and efficiency of the simulation
leading to an expected communication time of ∑ 𝑇!&

!#$, as it
allows for parallel processing on multiple CPU processors or
nodes to enable faster execution times. Being a scalable parallel
API to support parallel implementation on distributed memory
architecture, it is also a favorable option for large-scale PEBB
simulations of power electronics systems as demonstrated from
our scalability tests.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 12:58:21 UTC from IEEE Xplore. Restrictions apply.

 DISTRIBUTION A. Approved for public release: distribution unlimited. (OPSEC 7522)

5

IV. RESULTS

A. Simulation Speed and Scalability

Upon comparing the performance results of MPI, Channels,
and MATLAB, the sequential MATLAB/Simulink was run as
the baseline simulation without applying any parallelization
techniques (e.g., the MATLAB Parallel Computing Toolbox).
The results can be found in [10].

Fig. 9. Comparison between JULIA channel and MPI for 0.5s simulation.

Fig. 10. Comparison between JULIA channel and MPI for 15s simulation.

Fig. 11. Comparison between JULIA channel and MPI for 30s simulation.

Fig. 12. Comparison between JULIA channel and MPI for 60s simulation.

Fig. 13. Comparison between JULIA channel and MPI for 120s simulation.

Figs. 9-13 show a comparison of the execution times among

three parallel implementations using Channels or MPI. A set of
simulation lengths (e.g., 0.5 seconds, 15 seconds, 30 seconds,
60 seconds, and 120 seconds) have been applied to test the
simulation performance. Other than the shortest 0.5s simulation
case, MPI implementation stayed the fastest in overall
simulation time.

Scalability-wise, when examining the execution times of all
simulations, we can observe that the time cost with MPI
implementation remained most constant from 1 load PEBB + 1
rectifier PEBB to 7 load PEBBs + 1 rectifier PEBB. This
indicated a strong scalability of the simulation which
introduced a neglectable overhead to simulation time when
more PEBBs were to be added to the system for integrated
simulation.

B. Simulation Accuracy
To validate the results of the Julia MPI version, a

comparison of the accuracy between the Julia MPI version with
the Julia sequential channel version was made. The R-square
algorithm was employed, which measures the proportion of
variation in the independent variable explained by the
dependent variable in a regression analysis. The R-square
values range from 0 to 1, with a value closer to 1 indicating a
better fit of the model to the data. The R-square values for the
outputs id, iq, and vDC of the MPI model were calculated and
compared to the sequential channel model. The R-square values
reported for the MPI model were vDC: 1.0, id: 1.0, and iq: 1.0,
which indicate a perfect fit of the model to the data, explaining
100% of the variation in the dependent variable using the
independent variable as shown in Figs. 14-16.

0

0.2

0.4

0.6

1+1 1+2 1+3 1+4 1+5 1+6 1+7

Ex
ec

u&
on

 &
m

e
(S

ec
)

Number of PEBBS

0.5-sec simula.on

MPI Sequen3al Channel Parallel Channel

0

5

10

15

20

1+1 1+2 1+3 1+4 1+5 1+6 1+7

Ex
ec

u&
on

 &
m

e
(S

ec
)

Number of PEBBS

15.0-sec simula.on
 Sequen3al Channel Parallel Channel MPI

0
5

10
15
20
25
30

1+1 1+2 1+3 1+4 1+5 1+6 1+7

Ex
ec

u&
on

 &
m

e
(S

ec
)

Number of PEBBS

30.0-sec simula.on
Sequen3al Channel Parallel Channel MPI

0
10
20
30
40
50
60

1+1 1+2 1+3 1+4 1+5 1+6 1+7

Ex
ec

u&
on

 &
m

e
(S

ec
)

Number of PEBBS

60.0-sec simula.on

Sequen3al Channel Parallel Channel MPI

0
20
40
60
80

100
120

1+1 1+2 1+3 1+4 1+5 1+6 1+7Ex
ec

u&
on

 &
m

e
(S

ec
)

Number of PEBBS

120.0-sec simula.on

Sequen3al Channel Parallel Channel MPI

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 12:58:21 UTC from IEEE Xplore. Restrictions apply.

 DISTRIBUTION A. Approved for public release: distribution unlimited. (OPSEC 7522)

6

Fig. 14: id values for 1+2 combination on 0.5s simulation.

Fig. 15: iq values for 1+2 combination on 0.5s simulation.

Fig. 16: vDC values for 1+2 combination on 0.5s simulation.

V. SUMMARY AND FUTURE WORK
This paper introduces PEBBs and their applications in

ground vehicle powertrain systems. We implemented a multi-
PEBB model and simulation in MATLAB and Julia. The Julia
Channels have several benefits but are not scaling well to very
large systems, while the Julia MPI provides the best simulation
speed as well as a constant scalability when the system is
expanded to simulate more PEBBs. In the future work, we will
continue to study the parallel implementation of diverse PEBB
components in ground vehicle powertrain systems and
investigate fast and scalable co-simulation between each
component through high-performance computing techniques.

ACKNOWLEDGMENT
This work was supported by the Simulation Based Reliability
and Safety (SimBRS) Program for modeling and simulation of
military ground vehicle systems, under technical services
contract W56HZV-17-C-0095 with the US Army DEVCOM
Ground Vehicle Systems Center (GVSC). Distribution A.
Approved for public release, distribution unlimited. (OPSEC
7522).

VI. REFERENCES

[1] M. H. Rashid, Power Electronics Handbook: Devices, Circuits, and

Applications, 3rd ed. Oxford: Elsevier, 2018.
[2] T. Ericsen, N. Hingorani and Y. Khersonsky, “PEBB - power electronics

building blocks from concept to reality”, 2006 Record of Conference
Papers - IEEE Industry Applications Society 53rd Annual Petroleum and
Chemical Industry Conference, Philadelphia, PA, USA, 2006, pp. 1-7.

[3] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics,
2nd ed. New York: Springer, 2001.

[4] Z. Zhang, H. Tu, X. She, T. Sadilek, R. Ramabhadran, H. Hu, and W.
Earls, “High-efficiency silicon carbide (SiC) based buck-boost converter
in energy storage system”, IEEE Industry Applications Magazine, Early
Access.

[5] H. Gui, R. Rui, Z. Zhang, J. Niu, R. Ren, B. Liu, L. M. Tolbert, F. Wang,
D. J. Costinett, B. J. Blalock, and Benjamin Choi, “Modeling and
mitigation of multi-loops related device overvoltage in three level active
neutral point clamped converter”, IEEE Transactions on Power
Electronics, vol. 35, no. 8, Aug. 2020, pp. 7947-7959.

[6] F. Wang, Z. Zhang, T. Ericsen, R. Raju, R. Burgos and D. Boroyevich,
“Advances in power conversion and drives for shipboard systems”,
Proceedings of the IEEE, vol. 103, no. 12, Dec. 2015, pp. 2285-2311.

[7] G. Ozkan, B. Papari, P. Hoang, N. Deb and C. S. Edrington (2019). “An
Active Thermal Control Method for AC-DC Power Converter with
Sequence-based Control Approach”, 2019 IEEE Electric Ship
Technology Symposium (ESTS), August 14-16, 2019.

[8] G. Ozkan, P. H. Hoang, P. R. Badr, C. S. Edrington and Papari, B. (2021).
“Real-time thermal management for two-level active rectifier with finite
control set model predictive control”, International Journal of Electrical
Power & Energy Systems, vol. 131, 107057.

[9] P. H. Hoang, G. Ozkan, P. R. Badr, B. Papari, C. S. Edrington,
“Integrating degradation forecasting into control and management system
of DC microgrids”, 2021 IEEE Fourth International Conference on DC
Microgrids (ICDCM), July 18-21, 2021.

[10] Y. Li, C Wagner, C Edrington, S. Jin, Z. Zhang, “Quantitative Analysis
of Accelerated Power Electronics Simulation Using Advanced
Computing Technology”, 2022 IEEE Applied Power Electronics
Conference and Exposition (APEC), March 20-24, 2022.

[11] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:
Converters, Applications, and Design, 3rd ed. New York: Wiley, 2003.

[12] A. R. Bakhshai, “Power Electronics Simulation with MATLAB”, IEEE
Ind. Electron. Mag., vol. 7, no. 1, pp. 41-48, March, 2013.

[13] J. L. Kirtley, “Simulation of Power Electronic Circuits”, IEEE Ind.
Electron. Mag., vol. 3, no. 1, pp. 14-22, March, 2009.

[14] The MathWorks Inc., “Simulink - Simulation and Model-Based Design”,
Available at: https://www.mathworks.com/products/simulink.html.

[15] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics,
2nd ed. Boston, MA: Springer US, 2001.

[16] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing”, SIAM review, 59(1), 65-98.

[17] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Parallel
computing with Julia”, Proceedings of the 1st Julia User's Conference.

[18] S. Hiti, "Modeling and control of three-phase PWM converters,"
Dissertation, Virginia Tech., 1995.

-50

0

50
100

150
0

0.
02

64
2…

0.
05

28
4…

0.
07

92
6…

0.
10

56
8…

0.
13

21
0…

0.
15

85
2…

0.
18

49
4…

0.
21

13
6…

0.
23

77
8…

0.
26

42
1…

0.
29

06
3…

0.
31

70
5…

0.
34

34
7…

0.
36

98
9…

0.
39

63
1…

0.
42

27
3…

0.
44

91
5…

0.
47

55
7…

Time (Sec)

id

ID Sequen3al ID MPI

-20
-10

0

10

20
30
40

0
0.

02
64

21
…

0.
05

28
42

…
0.

07
92

63
…

0.
10

56
84

…
0.

13
21

05
…

0.
15

85
26

…
0.

18
49

47
…

0.
21

13
68

…
0.

23
77

89
…

0.
26

42
10

…
0.

29
06

31
…

0.
31

70
52

…
0.

34
34

73
…

0.
36

98
94

…
0.

39
63

15
…

0.
42

27
36

…
0.

44
91

57
…

0.
47

55
78

…

Time (Sec)

iq

IQ Sequen3al IQ MPI

500

550

600

650

0
0.

02
64

21
…

0.
05

28
42

…
0.

07
92

63
…

0.
10

56
84

…
0.

13
21

05
…

0.
15

85
26

…
0.

18
49

47
…

0.
21

13
68

…
0.

23
77

89
…

0.
26

42
10

…
0.

29
06

31
…

0.
31

70
52

…
0.

34
34

73
…

0.
36

98
94

…
0.

39
63

15
…

0.
42

27
36

…
0.

44
91

57
…

0.
47

55
78

…

Time (Sec)

vDC

Vdc Sequen3al Vdc MPI

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 12:58:21 UTC from IEEE Xplore. Restrictions apply.

