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Abstract — Power electronics converters, as an enabler for 
future power and energy system, are heavily used in military 
ground vehicle powertrain systems to provide reliable and efficient 
power conversion. Virtual prototyping of power electronics 
converters using computer-aided modeling and simulation to 
create and test power electronics circuits and systems before they 
are physically constructed can help engineers to optimize designs, 
reduce development time, and lower costs. This paper 
demonstrates the effectiveness of developing a High-Performance 
Computing (HPC)-based power electronics modeling and 
simulation approach to speed up the entirety of simulation time to 
support high-speed power electronics-enabled power architecture 
for demanding ground vehicle powertrain applications. First, a 
multiple power electronics building block (PEBBs)-based model 
for the virtual prototyping of power electronics converters is 
developed in MATLAB. This is then followed by a parallel 
implementation of the same model in Julia utilizing its high-
performance compiled programming language’s fast computing 
capability and a variety of supported parallel computing 
programming interfaces. Later, more PEBBs are added to the 
multi-PEBB model to test the scalability of the parallel simulation. 
It is observed that the Message Passing Interface-based parallel 
multi-PEBBs simulation in Julia is both fast and scalable without 
a noticeable increase in execution times when more PEBBs are 
added to the system.  

Index Terms— Power Electronics Simulation, High-Performance 
Computing, Simulation Software, Faster-Than-Real-Time 
Simulation  

I.  INTRODUCTION 
Power electronics converters, as an enabler for future power 

and energy system, are heavily used in military ground vehicle 
powertrain systems to provide reliable and efficient power 
conversion. An essential component in power electronics 
converters is power electronics building blocks (PEBBs) which 
are known for their high efficiency in controlling and 
converting electrical power [1], as illustrated in Fig. 1.  

PEBBs are platform-based approaches where basic building 
blocks are consistent with one another. PEBBs share defined 
functionality, standardized hardware, and control interfaces that 

 
 

 

are widely adopted for multiple applications, which result in 
high-volume production with reduced efforts needed in 
engineering [2]. A PEBB typically includes diodes, transistors, 
capacitors, inductors, and resistors that can be used in different 
configurations through advanced control algorithms and 
switching techniques to create various types of power electronic 
circuits such as rectifiers, inverters, and DC-DC converters [3]. 
PEBB also offers scalability and modularity, making them easy 
to integrate into larger systems to create complex power and 
energy systems [1]. 

 
Fig. 1. Ground vehicle system with power and energy system emphasized, 

including energy conversion units enabled by PEBBs. 
There are multitudes of research that have been published 

that is relevant to power electronics as enablers and on PEBBs 
approaches. However, none of the work on PEBB enablers has 
been translated to next-generation combat vehicle applications. 
In this work, we aim to enable fast virtual prototyping of PEBB-
based power electronics converters for ground vehicle 
powertrain systems leveraging the latest high-performance 
computing techniques based on some prior work that we have 
performed relevant to this area [4-10]. This fast virtual 
prototyping of power electronics converters will allow us to 
create and test power electronics circuits and systems in a 
ground vehicle powertrain system before they are physically 
constructed and thus help engineers to optimize designs, reduce 
development time, and lower costs. 
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This paper is organized as follows: Section ⅠⅠ gives the 
background about the platforms that can be used to simulate 
power electronics. Section ⅠⅠⅠ introduces the methodology and 
case study engaging the Multi-PEBB Modeling and Simulation 
using MATLAB, Julia Channels and Julia MPI. Section Ⅳ 
presents the results of various methodologies discussed in 
Section ⅠⅠⅠ. Lastly, Section V discusses the future work and 
summary. 

II.  BACKGROUND 
There are several simulation platforms that can be used for 

the virtual prototyping of power electronics components. 
MATLAB is one popular software tool that has many built-in 
functions and tools for simulating and analyzing power 
electronic circuits [11,12]. One of the advantages of using 
MATLAB for simulating PEBBs is its ability to handle 
complex mathematical equations and perform simulations for a 
wide range of power electronic circuits [13]. 
MATLAB/Simulink is a graphical simulation tool that allows 
engineers to model and simulate power electronics circuits and 
systems with a block diagram interface in a virtual 
environment, which can save time and reduce costs associated 
with physical prototyping [14]. They also offer various 
simulation models and analysis toolboxes that can help 
engineers to optimize designs and improve the overall 
performance of power electronics systems. Its advanced 
mathematical capabilities, graphical interface, and built-in 
toolboxes make it an ideal platform for simulating complex 
power electronic circuits. 
 However, simulating PEBBs using MATLAB can present 
some challenges in simulation speed, especially when dealing 
with large and complex circuits. First, simulating large and 
complex PEBBs can be computationally intensive and can take 
a long time to complete. This can be especially problematic 
when running numerous simulations to optimize circuit design 
parameters. Second, the choice of solver can also affect the 
stability of the simulation, especially when simulating circuits 
with high switching frequencies. Third, large and complex 
PEBBs can require a significant amount of memory to simulate, 
which can cause issues on computers with limited resources 
[15]. 

To address these issues, in addition to using efficient 
modeling techniques, choosing appropriate simulation settings, 
and optimizing the code, a more advanced simulation platform 
with parallel computing capability is also desired to overcome 
the computational constraints that come with MATLAB’s 
interpreted language nature and memory-intensive bound for 
complex PEBBs simulation.  

One solution to address these limitations would be to 
develop the simulation in Julia [16]. Julia is a high-
performance, compiled programming language for technical 
computing, data science, and machine learning. It was first 
introduced in 2012 by a group of scientists, engineers, and 
programmers who sought to create a language that combined 
the ease of use of Python and the performance of traditional 
scientific computing languages like Fortran and C [16].  

One of the primary advantages of Julia is its high 

performance. Julia is designed to execute code quickly, with a 
just-in-time (JIT) compiler that can optimize code on the fly, 
resulting in performance that can be comparable to that of 
traditional compiled languages like C and Fortran [16]. This 
makes it well-suited for computationally intensive tasks, such 
as simulations and numerical analysis. Julia’s built-in support 
for distributed computing and parallelism allows it to take 
advantage of multicore processors or manycore processors for 
faster computations [16, 17]. As a result, we chose to develop 
our complex PEBB-based power electronics simulation for 
ground vehicle powertrain systems in Julia using parallel 
computing to achieve accelerated computational speed and 
scalability without sacrificing the simulation accuracy.  

III.  METHODOLOGY 

A.  Multi-PEBB Modeling and Simulation using 
MATLAB/Simulink 
We first started the Power Electronics simulation on MATLAB 
as a benchmark based on the architecture in Fig. 2. The PEBB 
concept with a fixed topology results in a model with similar 
intrinsic variables, control variables, and disturbance variables 
for various energy conversion scenarios, therefore, generalizing 
a model in a universal format of state space equations becomes 
possible. In other words, PEBB enables not only a standardized 
power electronics hardware but can also be virtually 
represented by a generalized model. Hence, one universal 
PEBB model can be formed and programmed for later 
simulation with paralleled computing. This is beneficial for less 
complex and time-efficient modeling and scalable simulation 
for power electronics-intensive energy systems.  

 
Fig. 2. Notional power and energy system enabled by PEBBs. 

Specifically, based on the derivation of average model and 
abc/dq coordinate transformation [18], power electronics 
circuit can be defined by differential equations. For individual 
energy conversion scenarios with different control schemes 
(e.g., rectification, inversion, DC/DC conversion), different 
equations can be rearranged to the same format expressed by 
(1) where parameters 𝑿""⃑  is for intrinsic variables (e.g., (id, iq, 
vDC) as AC currents in the dq domain and DC voltage for 
rectifier), 𝒖""⃑  is for disturbance variables (e.g., (vd, vq, iDC) as the 
AC input voltages in the dq domain and DC load current for 
rectifier). A and B are matrices with various coefficients to 
represent power stage parameters (e.g., L and C) and different 
control variables (e.g., dd and dq) [18]. 
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𝑿""⃑ ̇ = 𝑨 ∙ 𝑿""⃑ + 𝑩 ∙ 𝒖""⃑  (1) 
Notably, the data through the information communication 

channel include DC link voltage from the generator rectifier 
PEBB to all load PEBBs (i.e., vDC in Fig. 2), and DC load 
current iDC from individual load PEBBs to rectifier PEBB (i.e., 
iDC1, iDC2, iDC3, etc. in Fig. 2). 

B.  Multi-PEBB Modeling and Simulation using Julia -- 
Channels 

To develop the parallel simulation of PEBBs in Julia, we 
implemented each PEBB component as an individual task 
running on a separate CPU thread/core. We started with the use 
of Julia's built-in advanced programming interface (API) -- 
Channel to enable the data exchange between each of these 
PEBB components. Channels are a type of data structure in 
Julia that allow for communication between parallel tasks. 
When creating a channel for each PEBB component and using 
these channels to communicate, the desired data could be 
exchanged between parallel tasks. Each PEBB component 
receives its perspective input values from its input channel, 
performs the necessary computations, and then sends the output 
values to its output channel for a receiving PEBB.  

Using channels for PEBB simulation in Julia helps us 
simplify the implementation and organization of the simulation 
code and theoretically improve its performance through 
parallelism. However, it is important to carefully design the 
channel communication and task scheduling to avoid potential 
issues such as race conditions and deadlocks. To explore the 
best channel implementation, we developed three versions of 
communication mechanisms adaptively to study the 
performance of the parallel multi-PEBB simulation.  

1) Channels Implementation with Sequential Communication 
Our first attempt was a naïve implementation of parallel 

PEBB simulation with sequential communication. Fig. 3 
illustrates this process with a (4 load PEBBs+ 1 rectifier PEBB) 
simulation using this implementation. Individual PEBBs run on 
separate CPU threads/cores and compute in parallel. The 
rectifier PEBB exchanges DC-link voltage values with all the 
load PEBBs in each time step of the entire simulation length 
through channels in Julia which are represented by the arrow 
lines in Fig. 3.  

 
Fig. 3. Channel implementation with sequential communication. 

Suppose the time taken for the rectifier PEBB to send data to 
load PEBB 1 through its respective channel and for load PEBB 
1 to read from the channel is denoted as time T1, while the time 
taken for load PEBB 1 to send back data to the rectifier PEBB 
and read by the rectifier PEBB is denoted as T5. Similarly, the 
time taken for the rectifier PEBB to exchange data with other 
load PEBBs is denoted as T2 and T6 with load PEBB 2, T3 and 
T7 with load PEBB 3, and T4 and T8 with load PEBB 4, 
respectively. The total time required for this sequential 
communication would be the sum of all times, i.e., ∑ 𝑇!"

!#$ . This 
parallel implementation is straightforward but inefficient due to 
the accumulated communication costs. We regard it as a 
baseline implementation with improved performance and 
scalability compared to the traditional MATLAB 
implementation but still has a large room to improve the 
simulation performance with reduced communication cost.  

2) Channels Implementation with One-Way Parallel 
Communication 

As a second attempt, we first identified parallelizable 
communication channels on the rectifier PEBB side which do 
not necessarily require a specific order and updated the parallel 
PEBB simulation with one-way parallel communication.  This 
allowed us to save significant time that would otherwise be 
wasted by processes waiting for preceding operations to 
complete in a sequential mode. In this modified model as shown 
in Fig. 4, the rectifier PEBB sends data to load PEBBs 1, 2, 3, 
and 4 simultaneously in time T1, while the returning 
communication still follows a serial implementation where the 
load PEBBs send data back to the rectifier PEBB individually 
in times T2, T3, T4, and T5, respectively. This modification 
was expected to significantly reduce the time required for the 
rectifier PEBB to send data to the load PEBBs, leading to a 
faster communication speed as ∑ 𝑇!%

!#$ . 

 
Fig. 4. Channel implementation with One-Way parallel communication. 

 

3) Channel Implementation with Two-Way Parallel 
Communication 

To further improve the communication efficiency, our third 
attempt was to parallelize the load PEBB side data passing to 
realize a two-way parallelization of the communication as 
shown in Fig. 5. The rectifier PEBB now sends data to all four 
load PEBBs 1, 2, 3, and 4, concurrently, which takes time T1. 
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Similarly, load PEBBs 1, 2, 3, and 4 return data to the rectifier 
PEBB simultaneously in time T2. The original idea was to 
further improve the communication efficiency to ∑ 𝑇!&

!#$  as the 
total required communication time. However, due to the 
runtime differences in computation for each load PEBB, they 
may not necessarily reach the time point of data passing on their 
own CPU thread/core at the same time, which will result in less 
overlap in concurrent communication. The actual 
communication time would vary and falls anywhere between 
∑ 𝑇!&
!#$  to T1+4*T2, which is not necessarily faster than the 

channel implementation with one-way parallel communication.  

 
Fig. 5. Channel implementation with Two-Way parallel communication. 

4) Limitation of Simulating PEBBs using Julia -- Channel 
Although the parallel PEBBs implementation using the Julia 

channels can already improve the multi-PEBB simulation for 
its enabled parallelism in computation and reduced cost in 
communication, it still has some potential issues that we found 
out. 

One challenge is that the channel method may not scale well 
to very large systems or systems with a high degree of 
complexity. This is because the channel method requires 
explicit communication between processes, which can result in 
a high overhead as the number of processes increases. 

Another issue is that the channel method may be prone to 
deadlocks, where processes become stuck waiting for messages 
that will never arrive. To avoid deadlocks, careful design of the 
simulation code is necessary, which may require additional 
programming expertise and development effort to explicitly 
manage communication between processes. 

Despite these challenges, the channel method remains a 
viable approach for simulating PEBBs in Julia, particularly for 
smaller systems or systems with moderate complexity. One 
should carefully consider the tradeoffs between performance, 
scalability, and development effort when choosing this 
simulation method. 

C.  Multi-PEBB Modeling and Simulation using Julia -- MPI 
The constraints in Julia Channels communication led us to a 

natural consideration of an alternative parallel computing 
standard Message Passing Interface (MPI), which could enable 
efficient communication between a group of processes 

(collective communication) without creating specific 
communication channels between each pair of processes (point-
to-point communication). This approach would eliminate the 
need for multiple channels between the rectifier PEBB and the 
load PEBBs, leading to a reduction in resource utilization and 
time consumption.  

Julia does provide built-in support for MPI, making it a 
powerful tool for parallelizing computationally intensive tasks 
such as simulating PEBBs. To implement PEBB simulation 
using MPI in Julia, the PEBBs need to be split into several 
independent processes, each responsible for simulating one 
PEBB of the system. These processes can communicate with 
each other using common MPI communication paths (as 
illustrated in Fig. 6 ) through the MPI communication functions 
such as MPI Broadcast (one of the standard collective 
communication techniques being used when one process wants 
to send the same information to every other process in the 
communicator) and MPI Reduce (another standard collective 
communication technique being used which performs a 
reduction operation on data across all processes in a specified 
communicator and returns the result to a single process.) As 
shown in Fig. 7 and Fig. 8, MPI Broadcast was used by the 
rectifier PEBB to communicate with the load PEBBs 1, 2, 3, 
and 4, where the same message was transmitted from the source 
processor to all the target processors. On the other hand, MPI 
Reduce was used to combine the data coming from all the load 
PEBBs at the rectifier PEBB side. For example, the values 2, 3, 
5, and 6 from the load PEBBs 1, 2, 3, and 4 on different CPU 
processes are aggregated to form a value of 16 on the process 
where the rectifier PEBB sits.  

 
Fig. 6. Channel implementation with collective communication.  

 
The MPI implementation of PEBB simulation in Julia can 

significantly improve the speed and efficiency of the simulation 
leading to an expected communication time of ∑ 𝑇!&

!#$ , as it 
allows for parallel processing on multiple CPU processors or 
nodes to enable faster execution times. Being a scalable parallel 
API to support parallel implementation on distributed memory 
architecture, it is also a favorable option for large-scale PEBB 
simulations of power electronics systems as demonstrated from 
our scalability tests. 
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IV.  RESULTS 

A.  Simulation Speed and Scalability 

Upon comparing the performance results of MPI, Channels, 
and MATLAB, the sequential MATLAB/Simulink was run as 
the baseline simulation without applying any parallelization 
techniques (e.g., the MATLAB Parallel Computing Toolbox). 
The results can be found in [10].  

 
Fig. 9. Comparison between JULIA channel and MPI for 0.5s simulation. 

 

 
Fig. 10. Comparison between JULIA channel and MPI for 15s simulation. 

 

 
Fig. 11. Comparison between JULIA channel and MPI for 30s simulation. 

 

 
Fig. 12. Comparison between JULIA channel and MPI for 60s simulation. 

 

 
Fig. 13. Comparison between JULIA channel and MPI for 120s simulation. 

 
Figs. 9-13 show a comparison of the execution times among 

three parallel implementations using Channels or MPI. A set of 
simulation lengths (e.g., 0.5 seconds, 15 seconds, 30 seconds, 
60 seconds, and 120 seconds) have been applied to test the 
simulation performance. Other than the shortest 0.5s simulation 
case, MPI implementation stayed the fastest in overall 
simulation time. 

Scalability-wise, when examining the execution times of all 
simulations, we can observe that the time cost with MPI 
implementation remained most constant from 1 load PEBB + 1 
rectifier PEBB to 7 load PEBBs + 1 rectifier PEBB. This 
indicated a strong scalability of the simulation which 
introduced a neglectable overhead to simulation time when 
more PEBBs were to be added to the system for integrated 
simulation.  

B.  Simulation Accuracy 
To validate the results of the Julia MPI version, a 

comparison of the accuracy between the Julia MPI version with 
the Julia sequential channel version was made. The R-square 
algorithm was employed, which measures the proportion of 
variation in the independent variable explained by the 
dependent variable in a regression analysis. The R-square 
values range from 0 to 1, with a value closer to 1 indicating a 
better fit of the model to the data. The R-square values for the 
outputs id, iq, and vDC of the MPI model were calculated and 
compared to the sequential channel model. The R-square values 
reported for the MPI model were vDC: 1.0, id: 1.0, and iq: 1.0, 
which indicate a perfect fit of the model to the data, explaining 
100% of the variation in the dependent variable using the 
independent variable as shown in Figs. 14-16.   
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Fig. 14: id values for 1+2 combination on 0.5s simulation. 

 

 
Fig. 15: iq values for 1+2 combination on 0.5s simulation. 

 

 
Fig. 16: vDC values for 1+2 combination on 0.5s simulation. 

 

V.  SUMMARY AND FUTURE WORK 
This paper introduces PEBBs and their applications in 

ground vehicle powertrain systems. We implemented a multi-
PEBB model and simulation in MATLAB and Julia. The Julia 
Channels have several benefits but are not scaling well to very 
large systems, while the Julia MPI provides the best simulation 
speed as well as a constant scalability when the system is 
expanded to simulate more PEBBs. In the future work, we will 
continue to study the parallel implementation of diverse PEBB 
components in ground vehicle powertrain systems and 
investigate fast and scalable co-simulation between each 
component through high-performance computing techniques.  
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