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Abstract  —  To meet the demand for accuracy and real-time 

capability of PV system degradation evaluation, massive volume 
data is needed to run high-fidelity and high-efficiency simulations 
and perform advanced data analysis. However, PV farm 
operators have a series of difficulties with PV inverter data, such 
as data collection from multiple channels, massive data storage, 
data management and massive data analysis. To address these 
challenges, we developed an integrated data management 
platform capable of data acquisition, processing, storage, query, 
and performing big data analysis utilizing AI algorithms. The 
platform can also achieve data correctness verification and 
provide an effective distributed data management solution to 
retrieve massive data and establish a connection to distributed 
computational frameworks. 

 
Keywords— data management platform, distributed computing, 

field reliability data, PV inverter 

I. INTRODUCTION 

The installation of PV systems has grown across the globe 
in the first half of 2022 [1]. Influenced by the enactment of the 
Inflation Reduction Act (IRA), the increase of photovoltaic 
(PV) penetration into the U.S. power market can be estimated 
to be further incentivized in the future. As more PV systems 
come into service rapidly, component operation and 
maintenance (O&M) costs need to be noticed. It is evidenced 
by field data from PV power plant operators that power 
electronic converters contribute most to O&M events, 
responsible for between 43% and 70% of the service calls 
[2][4]. Field reliability data is an important indicator to help 
operators to monitor the operational status under measured 
environmental stressors. Based on the historical performance 
data, operators can better evaluate the current state of health 
condition and predict the lifetime of components. Meaningful 
field reliability data may include parameters of the local 
environment (temperature, humidity, irradiance), PV farm 
(configuration considering grounding), grid data (grid 
command, power quality, grid disturbance), and inverter data 
(DC-link voltage, P/Q reference). The collection and analysis 
of field reliability data may help operators to better understand 

the degradation pattern of inverters. In addition, operators can 
schedule necessary maintenance in advance, reducing the 
likelihood of PV system failure. 
    The traditional field data collecting and managing 
approaches meet several challenges: 

1. Some field reliability data is measured by the built-in 
measurement tools inside the component. It is only 
accessible from the designated data portal provided 
by the manufacturers. Environmental data and 
inverter operational data are usually collected by 
distinct channels. There are still several difficulties 
with integrating data from different sources. 

2. The correctness of collected field data is not always 
dependable. For example, if the solar irradiance 
sensors are blocked by other objects, the irradiance 
recorded at that time is inaccurate. It is difficult to 
verify the correctness of collected field data. 

3. More advanced measurement tools with higher 
accuracy and higher time resolution are applied 
widely. Massive data with higher precision is 
accumulated as time grows. The way to efficiently 
store, retrieve, and analyze mass historical data is 
also a challenge.  

 In this paper, we propose an integrated field data 
management platform that can address the challenges 
mentioned above. Field data collection is introduced in 
Section Ⅱ. The data management platform capability is 
introduced in Section Ⅲ. Section Ⅳ discusses conclusions 
and future work. 

II. FIELD RELIABILITY DATA COLLECTION 

The importance of renewable energy cannot be overstated 
as the world transitions to net zero carbon emissions. PVs are 
a type of renewable energy source that have vast potential yet 
currently face reliability issues. In particular, PV inverters are 
one of the most unreliable subsystems within the larger PV 
system due to their complexity. Some of the components 
within PV inverters that have the worst reliability are 
capacitors, cooling fans, metal oxide varistors, printed circuit 
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boards, power modules, and relays/contactors. Collecting data 
on the stressors that cause these components to fail, and thus, 
the entire PV system to fail, could provide invaluable insight. 
As such, a field reliability data collection technique that 
captures stressors such as temperature, humidity, power, 
voltage, current, etc. is paramount. 

For the purpose of understanding the comprehensive 
performance of PV inverters, a field data acquisition system is 
established. The structure of the data acquisition system is 
shown in Fig. 1. Two categories of field data are collected: 
operating condition data and environmental data. Operating 
condition data is comprised of grid data and inverter data. 
Environmental data provides historical environmental 
conditions around PV inverters. 

Grid data is provided by the grid data source. It can be 
acquired via the online portal provided by the grid data utility 
partner. The grid data includes three-phase current, voltage, 
and power. It also includes transient data records to indicate 
the operating condition data when faults or dynamic events 
happen on the grid. Inverter data includes AC and DC 
power, voltage, and current. It is recorded by the measurement 
tool designed in the PV inverters. The data is transmitted to 
the user interface that can help operators to conduct energy 
monitoring, managing, and grid-compliant power control. 
Environmental data includes the ambient temperature, 
relative humidity in the PV farm, Global Horizontal Irradiance 
(GHI) received by the PV farm, and module temperature 
around critical electrical components in the PV inverter. These 
types of environmental data have two data resources. One is 
from the sensors deployed around the PV inverters. This data 
is captured, uploaded to the web portal, and known as 
environmental data source A. The other is from the sensors 
deployed around the PV farm. This data is captured, uploaded 
to the web portal, and known as environmental data source B.  

To demonstrate the validation of our design, the following 
case study is conducted. SMA SUNNY-TRIPOWER-

30000TL-US inverters (30000TL-US-10) are used at the 
Otarre solar farm in Cayce, South Carolina, USA. Data 
sources provided by our utility and service partner, their 

corresponding web portal, and their time resolution can be 
found in TABLE I.  

III. DATA MANAGEMENT PLATFORM 

To overcome the challenge of managing the field reliability 
data efficiently, we established a data management platform to 
integrate the data and perform the preliminary analysis based 
on the collected historical data. It 1) integrates field data from 
different channels, 2) applies big data solutions to optimize 
data retrieval and analysis capability, and 3) performs cross-
data validation to increase the accuracy and reliability of 
collected field data. Related technical details of these features 
will be introduced in the rest of this section. 

 
A. Data Integrations 

In our data acquisition system, there are online data portals 
for grid data, environmental data, and inverter data. Each 
online data portal provides its own user interface to help 
operators monitor the operating condition and environmental 
information as well as track historical data. However, 
monitoring and tracking historical data across different 
channels is not supported by any existing online portals. As a 
result, we developed a third-party, python-based data 
management system to integrate multi-channel data and 
provide an efficient data retrieval solution to monitor and 
track the inverter operating condition and surrounding 
environmental information. 

The workflow of the data management is shown in Fig. 2. 
At first, dedicated web scraping scripts extract field data from 
the three online portals separately. The web scrapings simulate 
the web browser to send requests for target data and gather the 
target data by fetching the response returned from the web 
portal server. Request, BeautifulSoup, and Selenium libraries 
are utilized in this application to perform the data scrap and 
parse the data.  

If some data source is missing, this data is marked with an 
error flag to be filled with the proper value later. Then, data is 
inserted into the corresponding MySQL databases and awaits 
further processing. 

B. Data Correlation and Fusion 

Fig. 1. Field reliability data acquisition dataflow. 

TABLE I. DATA SOURCE REFERENCE 

Data Source Utility & Service Partner 
(Online Portal) 

Time Resolution 

Grid Data Source Dominion Energy 10 minutes 
Inverter Data Source SMA (Sunny Portal Powered 

by ennexOS) 
5 minutes 

Environmental Data 
Source A 

SMA (Sunny Portal Powered 
by ennexOS) 

1 minute 

Environmental Data 
Source B 

Also Energy (PowerTrack) 5 minutes 

 

978-1-6654-6059-0/23/$31.00 ©2023 IEEE 2
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 13:00:42 UTC from IEEE Xplore.  Restrictions apply. 



 

The same data field may have multiple data sources, 
therefore, the measurements from multiple channels can be 
merged into a more accurate dataset. The list of data that have 
multiple channels is shown in TABLE II.  

Data correlation: To avoid the failure of data fusion 
caused by invalid source data, several data validation actions 
are taken to verify the consistency and reasonability of the 
data. The Module Temperature Check [6] is performed to 
reduce the measurement noise. Besides, the isolation Forest 

algorithm [5] is performed to detect outliers. Isolation Forest 
constructs iTree based on the features of the dataset. The node 
near the root node of iTree is detected as an outlier. The 
outlier data is filled with the reasonable value derived based 
on the nearest data point.  

Data fusion: After assuring the validation of the data 
source, data fusion of multiple data channels can be performed. 
However, due to discrepancies in the location of sensors, the 
measurement scope, and the measurement accuracy, the same 
type of datasets from different channels are not always 
identical. The field data from Sunny Portal is collected by the 
dedicated sensors deployed in the PV inverter closure to 
evaluate the operational status of PV inverters and the 
environmental conditions around inverters, and hence, the data 
from Sunny Portal is more reliable. Other data channels are 
regarded as complementary sources to increase the fidelity and 
accuracy of the data. As for operational information, like AC 
power, the power data from Sunny Portal provides the 
operating condition of each inverter, and the power data from 
the grid data source provides the operating condition of the 
grid. When dynamic events are detected on the grid, the data 
collected by individual inverters is not as accurate as the data 
from the grid because of higher resolution measurement 
instrumentation equipped at the grid side by the utility 
company.  

The metadata from different channels is organized in 
different formats and time resolutions. Therefore, the data 
from the channel with a lower time resolution can augment to 
a higher resolution. For example, the temperature from 
environmental data source A is updated every minute, and the 
temperature from environmental data source B is updated 
every five minutes. Temperature data from Sunny Portal is 
compensated by referring to the data from the other channel. 

Compared to the traditional interpolation method, the data 
from the other channel provides a more accurate estimation. 
After finishing the data correlation and data fusion, the 
merged dataset is integrated into the database. 

C. Data Management 

With the field data collected over time, proper data 
management solutions are needed. To satisfy the demand for 
data storage, query, and further analysis, the relational 
database, distributed data framework, Apache Hadoop, and 
other techniques are utilized. These utilization details are 
discussed in the rest of this section. 

Metadata management: Due to the need for the prompt 
query for a large number of metadata, the field metadata is 
stored in the relational database MySQL. The field data can be 
updated and retrieved via SQL commands efficiently. For the 
convenience of queries, an online demo portal is developed to 
acquire specific data as shown in  

Fig. 3. APIs are also provided for querying the field data 
from the database with the specific data field in the designated 
time range. The metadata can be easily acquired for future 
R&D needs.  

 
Fig. 3. Metadata query online portal. 

Distributed data management: As the metadata 
accumulates, performing data processing and analysis on 
massive data becomes more expensive. It takes a long time to 
read data, perform computation, and write data back to the 
database when the data volume becomes large. Therefore, 
distributed data management solutions are needed. The 
Hadoop Distributed File System (HDFS) is a distributed data 

Fig. 2. Data management platform workflow. 

TABLE II. DATA FIELD AND SOURCE 

Information Type Data Field Data Source 
Environmental Ambient Temperature (°F) Environmental Data 

Sources A and B 
 Solar Irradiance (W/m2) Environmental Data 

Sources A and B 
Operational AC Power (W) Inverter and Grid 

Data Sources 
 AC Voltage (V) Inverter and Grid 

Data Sources 
 AC Current (A) Inverter and Grid 

Data Sources 
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storage system used in the Hadoop ecosystem [9]. HDFS 
stores the data across multiple machines or nodes in a cluster. 
It is the foundation of other Apache applications. Hadoop 
applications follow the master-slave architecture to achieve 
storing and processing of massive amounts of data effectively. 
A portion of data is assigned to each node and the data on 
each node is replicated across the node for failure recovery. 
Considering the data update and query efficiency, the 
metadata is stored in MySQL, but for the convenience of 
performing distributed data processing and analysis, metadata 
needs to be migrated to HDFS. Apache Sqoop is used as a 
translator to migrate the metadata from structured data in 
MySQL to unstructured data in Apache Hive called Apache 
Spark. Apache Spark is designed for fast computation in 
performing data science and machine learning on single 
machines or clusters. This workflow can be deployed on cloud 
service platforms, like AWS and AZURE. 

IV. CASE STUDY 

    A case study is performed to demonstrate the efficiency and 
feasibility of the workflow we designed. We selected the 
operating condition data for the same inverter with a time 
resolution of 5 minutes and environmental condition data with 
a time resolution of 1 minute as a use case to introduce the 
workflow of the data management platform. All the data is  
measured at Ottare PV farm located in Cayce, South Carolina. 
To be specific, we select the data for a whole day on May 15th, 
2022, to introduce the data correlation and fusion workflow. 
And we select the data for a whole year from May 2022 May 
2023 to demonstrate the distributed data management. 

Both operating condition data and environmental data are 
collected by web scraper scripts from three data resources 
daily. The collected data will do the data correlation. Module 
Temperature Check will be used to evaluate the validation of 
the temperature and irradiance information. The completeness 
of data will be evaluated. Empty, missing data and outlier 
values will be filled with the value measured at the closest 
moment if the completeness is over 99% (The ratio of Nan 
value to total values). Or else, also including other situations 
for data fusion, it will be reported as the missing data period. 
The data from the second data channel will be used and filled 
into the missing data period. Because the data from two 
different channels vary caused of location differences, the 
similarity between the data from the two channels will be 
evaluated. If the cosine similarity between data from two 
channels is lower than 99.5%, the second channel data will be 
converted based on the gap between the data from the two 
channels before being filled. And the data from the second 
channel will be filled directly if the data from the two 
channels are similar. The comparison of ambient temperature 
data before and after data correlation and fusion is shown in 
Fig. 4. After the data correction and fusion, metadata will be 
stored and managed by the relational database MySQL for 
prompt data queries. 

 

When the data accumulates to a large volume, the data 
manipulation and advanced data analysis are very time-
consuming. In order to increase the operation efficiency, the 
metadata will be migrated from MySQL via the Sqoop to 
HIVE for later use by Apache SPARK. Advanced statistics 
can be performed via PySpark more efficiently compared to 
traditional data management platforms. 

Fig. 4. Comparison of results before and after data correction and fusion. 

Besides, we also can perform machine learning algorithms 
using Mllib [8] for fast advanced analysis when handling 
large-scale data. For example, cluster algorithms can be used 
to categorize environmental condition data of different days 
into different weather patterns. To better visualize the 
clustering result, the data has been decomposed into two-
dimensional data, which is shown in Fig. 5. The red points are 
the locations of the cluster centers. The blue points are 
locations of the one-day environmental conditions mission 
profile in two-dimension. The clustering result can help to 
merge similar mission profiles and decrease the simulation 
workload by skipping using similar mission profiles as input. 

 
Fig. 5. Clustering results for environmental conditions of one year. 

  

978-1-6654-6059-0/23/$31.00 ©2023 IEEE 4
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 13:00:42 UTC from IEEE Xplore.  Restrictions apply. 



 

Ⅴ. CONCLUSION AND FUTURE WORK 

To meet the demand for accuracy and real-time capability of 
PV system degradation evaluation [10], massive volume data 
is needed to run high-fidelity and high-efficiency simulations 
[11] and perform advanced data analysis. In this paper, the 
implementation details of field data management are 
introduced. And a demo example use case is described to 
show the feasibility. our main contribution is developing an 
integrated data management platform capable of data 
acquisition, processing, storage, query, and performing big 
data analysis utilizing AI algorithms. The platform can also 
achieve data correctness and provide an effective distributed 
data management solution to retrieve massive data and 
establish a connection to distributed computational 
frameworks. This data management platform provides a large-
scale computation capability for PV-related R&D needs. 
Existing analysis tools and algorithms which are subject to 
computation capability and large-scale data manipulation 
efficiency can also be moved to this platform. For the current 
stage, we focus more on the environmental condition data 
process and analysis. In the future, we will add some support 
targets to the data process and analysis on the operating 
condition data process.  
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