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Abstract—This paper progresses on the development of the dis-
crete electromechanical oscillation control (DEOC). The DEOC
approach is based on the step-wisely control of electronically-
interfaced resources’ (EIR) power output and aims to signif-
icantly reduce the amplitude of multiple oscillatory modes in
power systems. The theoretical formulation of the problem and
the proposed solution is described. This work addresses the
issues of a nonlinear grid representation and favorable reduction
of control actions from EIRs, as well as their impact on the
DEOC performance. Simulations on a 9-bus system validate
the effectiveness of the proposed control even when highly load
scenarios are considered.

Index Terms—inter-area oscillations, oscillation damping, dis-
crete control, power system control, power system oscillations.

I. INTRODUCTION

At this moment, the amount of renewable power integrated
into electrical power systems only covers a small part of the
total load. The rest of the load is for the largest part covered by
conventional thermal, nuclear, and hydropower plants. As long
as the renewable penetration level is low, the overall dynamic
behavior of the power system is expected to be determined
by synchronous generators. However, in some network areas,
wind turbines and PV solar plants have been gradually starting
to replace the output of conventional generators, especially
during periods with low load and much wind [1]–[3].

This situation leads to a soaring risk of more recurrent
appearances of poorly damped oscillations. Inertia distribution
and grid topology have been detected as relevant factors
involved with the appearance of critical oscillations [4], [5].
This situation can be aggravated if renewable resources are
deployed away from load centers, thus increasing stress on
the transmission system [6]. Consequently, oscillations can
become a critical problem in the forthcoming grid.

The design of new control systems and the expansion of
the grid control capabilities may pose a suitable solution to
overcome these approaching problems [7], [8]. As well as with
continuous control, multiple attempts to handle oscillations
have been proposed with discrete controllers. The main idea
behind these proposals is the use of elements with fast switch-
ing capabilities such as series-connected switching capacitors,
SVC, or STATCOMs to return to the system equilibrium
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point in minimum time after a disturbance [9]–[11]. Although
several of these approaches have proven to be effective for
simplified systems, practical issues such as model aggregation,
lack of multi-mode representation [12], [13], and fault location
dependency make these work burdensome to real applications.

A new approach to discrete control has been proposed
in [14] and [15]. The so-called discrete electromechanical
oscillation control (DEOC) aims to enable emerging power
technologies for oscillation control. Wind power and PV solar
plants are exploited by enabling a discrete control logic to
transiently reduce their power output without the need for
curtailment. Moreover, battery energy storage systems can
be controlled for both injection or absorption of power in a
discrete fashion. This is possible due to their inverter-based
coupling to the power grid, which can be controlled quickly
compared to transient stability-related power system dynamics.

Previous research works that deal specifically with the
DEOC problem have proposed the fundamental concepts be-
hind this control strategy. In order to do so, assumptions
have been made to develop a closed-form solution that can
effectively provide a procedure to determine the required
power injection/absorption by controllable components (CCs),
and synthesis of switching functions [14], [15]. This paper
dispenses some of these assumptions by:

• considering a nonlinear representation of the grid by
means of the classical power flow formulation, and

• reducing the number of required CCs by working only
with buses with high mode controllability with respect to
the electromechanical modes of interest.

Simulations in the IEEE 9-bus system verify the findings
of this work. This paper is structured as follows. Section II
describes the theoretical development of the DEOC including
models used, overall DEOC operation, discrete power injection
by CCs, and switching conditions. Section III presents simula-
tion results and control performance. Finally, conclusions are
presented in Section IV.

II. DISCRETE ELECTROMECHANICAL OSCILLATION
CONTROL (DEOC)

DEOC aims to enable discrete control mechanisms that
inject/absorb active power at a given set of buses. This set
corresponds to buses whose connected elements (EIRs) can
step-wisely adjust their power output, such as energy storage
systems, PV solar generation, and wind turbines. This section
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discusses the DEOC foundations for a general formulation
based on a nonlinear grid representation.

A. Models
1) Synchronous generators: consider the generator i repre-

sented with a classical model neglecting the damping
dδi
dt

= ωs (ωi − 1) (1)

dωi

dt
=

1

2Hi
(Pmi − Pei) (2)

where δi is the torque angle in radians, ωs is the synchronous
speed (377 rad/s for a 60 Hz system), ωi is the speed deviation
in per unit, Hi is the inertia constant in seconds, Pmi is the
mechanical power input in per unit, and Pei is the electrical
power output of generator i in per unit. The electrical power
is derived from the machine equivalent circuit of Fig. 1 as

Pei = Re
{
Eie

jδi Ī∗i
}
= Eiixi cos δi + Eiiyi sin δi (3)

In addition, from the same circuit, the algebraic equation
that connects the machine to the grid is

Eie
jδi = (ixi + jiyi) jX

′
di + Vie

jθi (4)

when separated into real and imaginary parts leads to

Vi cos θi = Ei cos δi +X
′
diiyi (5)

Vi sin θi = Ei sin δi −X
′
diixi (6)

with idi and iqi the SG i corresponding algebraic variables.

jX ′
di

Eie
jδ

+

∼

Ii = ix + jiy

V ie
jθ

+

-

Fig. 1. SG classical model equivalent circuit.

2) Grid: consider the admittance matrix formulation to
represent the nb-buses power grid as follows

Īb = YbusV̄b (7)

where the current and voltage injection vectors are defined as
Īb = [Ī1 Ī2 · · · Īn]T , and V̄b = [V̄1 V̄2 · · · V̄n]

T , with
V̄i = Vie

jθi . When separated into real and imaginary parts,
result in 2nb algebraic equations to represent the grid.

The current injection Īi at PQ and PV buses is given by

Īi =
S̄i

∗

V̄i
∗ =

Pi − jQi

Vi
ejθi (8)

Īi = ixi + jiyi (9)

respectively. With S̄i = Pi + jQi being the complex power
consumption at the PQ bus. For PV buses, the current
components ixi, and iyi are the algebraic variables of the
corresponding synchronous generator.

3) Controllable components: given that EIRs are assumed
to be step-wisely controlled, consider m CCs with their active
power output given by

Pref = P 0
ref +∆P

(
µton − µtoff

)
(10)

with Pref , P
0
ref ,∆P ∈ Rm. P 0

ref is the initial power set-point
vector, ∆P is a vector that contains a predefined quantity for
every CC, and must be determined based on both the particular
characteristic of the system under study and the number of
CCs, µτ = 1,∀t > τ is the unit step function, and ton, and
toff the switching times with toff > ton.

B. DEOC operation

A nb-buses power system with ng−1 SGs represented by a
classical model and one slack bus, m controllable components,
and the admittance formulation for the grid can be represented
by the following set of differential-algebraic equations

ẋ = f(x, y, Pref ) (11)
0 = g(x, y, Pref ) (12)

with the state vector x = [δ ω]T ∈ R2(ng−1), the vector of
algebraic variables y = [ix iy V θ]T ∈ R2(nb+ng−1). f is
composed of the differential equations (1) and (2) to represent
each (2ng − 1) generators, g is composed of the algebraic
equations (5) and (6) for each (2ng − 1) generators, and 2nb

grid equations.
Note that the consideration of neglecting damping terms

leads to an oscillatory behavior of the dynamical system when
subject to a disturbance. Then, the switching operation can be
pictured as shown in Fig. 2 [14], and described as follows:
initially, the system is considered to be in steady-state at the
equilibrium point xe, but the state variables are shifted away
from the equilibrium because of a disturbance, such as a short-
circuit. At time t0 the short-circuit is cleared and the states
at that time are x(t0) = x0. As shown in Fig. 2-(a), after
the short-circuit, the system will exhibit a periodic trajectory
(black dashed line) centered at xe. The DEOC is activated
at some point along the trajectory when x(t = tst) = xst

(st: switching time), and the system will shift its trajectory to
another periodic orbit centered at the controlled equilibrium
point xce–described by the red dashed line in Fig 2.

In the optimal case, xe belongs to the controlled orbit, then
toff is set to t when x(t) = xe. The entire DEOC operation
will lead the system through the blue trajectory, ultimately
eliminating the oscillation. Fig. 2-(b) shows a case when the
switch-on is performed slightly after x(t) = xst. In this case,
xe would not belong to the controlled periodic trajectory and
the oscillation cannot be annihilated. If the switching is not
performed at the optimal time, a sub-optimal trajectory near
the equilibrium point xe will be desirable.

C. Power injection from controllable components

The objective of the DEOC operation is to significantly
reduce the oscillations associated with the most excited modes
of the system. Along these lines, one possible solution to tackle
multi-mode systems is to progressively target one mode at a
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Fig. 2. Graphical description of system trajectories with DEOC [14]: (a)
optimal solution, (b) sub-optimal solution.

time through the injection/absorption of active power from
controllable components.

The linearization around the stable equilibrium point ze =
[xe ye P 0

ref ]
T is given by

∆ẋ =
∂f

∂x

∣∣∣∣
ze

∆x+
∂f

∂y

∣∣∣∣
ze

∆y = J1∆x+ J2∆y (13)

0 =
∂g

∂x

∣∣∣∣
ze

∆x+
∂g

∂y

∣∣∣∣
ze

∆y = J3∆x+ J4∆y (14)

Note that in steady state the power injection from CCs ∆P =
0. Then, applying Kron’s reduction to eliminate algebraic
variables leads to

∆ẋ =
[
J1 − J2J

−1
4 J3

]︸ ︷︷ ︸
Asys

∆x (15)

From the system matrix, Asys right-eigenvectors vi and
corresponding eigenvalues λi can be computed such that
Asysvi = λivi for all i = 1, 2, . . . , n with n being the number
of states. In a matrix form: V = [v1 v2 · · · vn]

T , and
Λ = diag{λ1, λ2, · · · , λn}. Consider the oscillation of the k-
th mode is targeted for elimination. For that particular mode,
one can define the projection P = MMT ∈ Rn×n with
M ∈ Rn×2 being the output matrix from the orthogonalization
of M̄ = [q1 q2] over the range(M̄ ) using the Gram-Schmidt
process [16]. Here, q1 = Re(vk) and q2 = Im(vk) are the basis
of the 2-dimensional projected space, with vk being the k-th
eigenvector corresponding to the eigenvalue λk. The projection
of a vector ∆x ∈ Rn over range(M ) is given by P∆x. In a
similar fashion, an orthogonal subspace to range(M ) is defined

as: N = Null(M) = {a ∈ N | Ma = 0} , N ∈ Rn×(n−2).
The projector over the null space of M is given by Pn =
NNT . The projected vector is Pn∆x.

Now, the representation of the projected vector onto the
range(M ) and range(N ) is determined as:

α =

S︷ ︸︸ ︷
(MTM)−1MT MMT︸ ︷︷ ︸

P

∆x = MT∆x (16)

αn =

Sn︷ ︸︸ ︷
(NTN)−1NT NNT︸ ︷︷ ︸

Pn

∆x = NT∆x (17)

respectively. The orthogonal projector matrices P and Pn are
very useful to target one mode at a time without exciting others
due to the shifting of the equilibrium point. To annihilate the
oscillation of the dominant mode, the DEOD will affect the
equilibrium point over the range(M ) and there will be no
displacement over the range(N ). This means that the projected
orbits related to any mode but the targeted k-th mode will have
no shifting in the equilibrium point due to the DEOC [15].

Note that the linear transformations S and Sn can be
decomposed into two block matrices S = [S1 S2] and Sn =
[Sn1 Sn2] with proper dimensions, since ∆x = [∆δ ∆ω]T .

Following (16) and (17), the projected displacement of the
equilibrium point onto range(M ) and its orthogonal subspace
are given by ∆α = S1∆δe and ∆αn = Sn1∆δe, respectively.
with ∆δe = δc − δe. A sufficient condition to have zero
displacement onto the null(M ) is: αn = 0 = Sn1∆δe. By
solving for ∆δe, the required controlled equilibrium point xc

is defined. This solution is given by:

∆δe = Kd̄ ∈ Null(Sn1) : |d̄| = 1 (18)

where K is a constant real parameter, and d̄ is the unit
direction vector of displacement of the equilibrium point to
ensure αn = 0.

Now, to translate these results in terms of power injec-
tion/absorption ∆P by EIRs, consider the following linear
model that includes the effect of CCs at non-generator buses

∆ẋ = J1∆x+ J2∆y (19)
0 = J3∆x+ J4∆y + J5∆P (20)

with the sensitivity matrix J5 = ∂g/∂Pref |ze . Using Kron’s
reduction to eliminate algebraic variables, and considering that
in steady-state ∆ẋ = 0, we get a relationship between the
static displacement of the equilibrium point ∆xe = [∆δe 0]T

with the power injection/absorption ∆P by CCs

∆P = [J2J
−1
4 J5]

+[J1 − J2J
−1
4 J3]∆δe (21)

where the operator + denotes the pseudo-inverse. With this
specific ∆P , the equilibrium point is only displaced on the
representation over the projected subspace range(M ). How-
ever, this formulation requires power injection/absorption at
all non-generator buses, which is non-realistic for a practical
application where we only count for just a few CCs.
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In order to reduce the number of required controllers for
DEOC operation, the mode controllability [17] can be used,
defined as

CONTkj = |wT
k Bj | (22)

where wk is the k-th left eigenvector of the system matrix Asys

and Bj denotes the j-column vector of the input matrix B.
This index exhibits the controllability of mode k from the j-
bus. The mode controllability is used to determine a controller
combination in the sense of minimizing the control action
∆P required. This index can be determined from the linear
model of equations (19) and (20) considering the input as
∆P and corresponding input matrix B = −[J2J

−1
4 J5], which

in this context expresses the sensitivity of the displacement
equilibrium point onto the targeted k-th mode with respect to
the power injection/absorption at the j bus.

This index is effective in reducing the number of buses
where control action ∆P is required. After the subset of
CCs is defined, by the least square problem associated with
the pseudo-inverse, we achieve a minimum displacement of
the equilibrium point onto the null(M ) by defining the injec-
tion/absorption by CCs as

∆P ∗ = A∆P (23)

where A is a diagonal matrix composed of zeros and ones
according to the buses where CCs are deployed. Note that
once the oscillation of the targeted dominant mode has been
annihilated through DEOC, the process can be repeated to shift
the equilibrium point on the representation over the projected
subspace range(M )–now related to the second dominant mode
and so on.

D. Switching conditions

As mentioned before, in order to perform a successful
DEOC operation the activation time ton should be obtained
such that the controlled dynamic evolution (red dashed hyper-
ellipsoid centered at xc in Fig. 2) contains the system equilib-
rium point xe. In the same way, when the dynamic evolution
is close to the equilibrium, the goal is to restrain oscillations
after DEOC is turned off, leading to a significant reduction in
the oscillation but not complete annihilation. As developed in
[14] and [15], a switching function to determine the switch-on
time and energy-based switch-off rule are considered.

1) Switch-on time: based on the linear model around the
pre-fault steady-state equilibrium point the following switch-
ing function:

h(x) = 2(xe − xc)
TD(xe − xc)

− (x− xc)
T (D +AT

sysEAsys)(x− xc) ∈ R (24)

can effectively determine the switching time when h(x) = 0.
Where D = (V −1)∗V −1, E = (V −1)∗(Λ−1)∗Λ−1V −1, and
the operator ∗ denotes the conjugate transpose. Note that D
and E are real positive definite matrices.
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100 MW

125 MW 90 MW

Fig. 3. 9-bus system with added controllable components.

2) Switch-off time: An energy-based approach can be used
to ensure that the switch back to the equilibrium point xe is
done appropriately. The oscillation energy is defined as the
summation of the individual kinetic energy of the SGs [18]

Ek(t) =

ng∑
j=1

Hjωs∆ω2
j (25)

where ∆ωj is the speed deviation of SG j in per unit, and
Hj is the inertia constant of SG j in seconds. When Ek(t) is
reduced, the oscillation will be shrunk and the states will be
confined to a closer orbit around the equilibrium point hence
considerably reducing oscillation amplitude. Thus, when the
states x are orbiting around the controlled equilibrium xc as
DEOC is on, set toff = t if at a particular time t, Ek(t)
reaches a minimum. Note that also a proximity function in
terms of the norm between the states and the equilibrium
point projections into the targeted subspace can also be used
to determine the switch-off time.

If performed at the optimal time, the switch-off is done
exactly at the original equilibrium point, thus completely
annihilating the targeted oscillation. Otherwise, a sub-optimal
operation that significantly reduces the oscillation is sought.

III. SIMULATION RESULTS AND ANALYSIS

Simulations are performed in a modified 9-bus system
shown in Fig. 3. Grid parameters are obtained from the MAT-
POWER library [19]. This system exhibits two electromechan-
ical modes of oscillation: one inter-area oscillation between G1
(slack bus) and G2-G3, and another local oscillation between
G2 and G3. No additional controllers are contemplated to
evaluate the sole action of the proposed DEOC. EIRs are
generically considered controllable components and are lo-
cated within the grid based on energy potential or technical
considerations. In this case, the mode controllability is used to
determine CC location. Based on this index, two controllable
components are considered to be deployed at buses 6 and 8
which are the two buses with the highest controllability for
both oscillatory modes of the system as shown in Table I.
Additionally, for the sake of simplicity, both CCs are set to
have P 0

ref = 0.
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TABLE I
9-BUS SYSTEM MODE CONTROLLABILITY

Bus i CONT1i CONT2i

4 0.302 0.001
5 0.537 0.113
6 0.972 0.323
7 0.966 0.043
8 0.961 0.304
9 0.530 0.105

Two highly loaded scenarios are taken into consideration
for analysis and performance of the DEOC operation. Each
scenario is set to increase the active power flow related to
each mode of oscillation near the static stability limit. They
are defined as:

• Scenario 1: Increase load at bus 9 in 400% and generation
of SG3 proportionally, which mainly increases the real
power flow in the path from SG3 to bus 4.

• Scenario 2: Increase load at bus 7 in 400% and generation
of SG2 and SG3 proportionally, which makes the real
power flow related to the local mode to become greater.

A. Scenario 1

Simulations are carried out considering a self-cleared three-
phase fault applied at bus 5 at t = 1 s with a total duration
of 5 cycles. Under this scenario, the local and inter-area mode
frequencies are 1.74 Hz and 0.78 Hz, respectively. Then, to
handle both modes, two discrete actions are required from
CCs, starting with the 0.78 Hz mode which is the most excited
mode due to the disturbance.

Results comparison between the base case (no control) with
the DEOC operation is summarized in Fig. 4. For the sake
of simplicity, only state variables δ and ω are shown. First,
it is appreciable that the uncontrolled dynamic response is a
combination of the two modes of oscillation, which is induced
by the high load condition of the grid and the location of
the disturbance (compare with results from [15]). Second,
the discrete control applied validates the performance of the
DEOC with a highly noticeable reduction of the oscillation
amplitude in the dynamic response. Note that in a practical
operation scenario, where damping is considered, SG dampers
and PSSs would take care of the remaining oscillation.

By using the switching function h(x) to determine the
switch-on time and local minimum oscillation energy Ek(t)
to define the switch-off time on each controllable component,
resulting in the following discrete operation:

CC1 : ∆P6 =


−22.71 MW if 1.566 s < t < 2.046 s
−63.27 MW if 2.408 s < t < 2.633 s

0 otherwise

CC2 : ∆P8 =


−34.60 MW if 1.566 s < t < 2.046 s
59.38 MW if 2.408 s < t < 2.633 s

0 otherwise
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No DEOC
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Fig. 4. 9-bus system dynamics comparison, scenario 1: (a) SG speeds,
(b) torque angle.

B. Scenario 2

In this case, a self-cleared three-phase fault was applied
at bus 6 at t = 1 s with a total duration of 5 cycles.
Due to the loadability of the system, the local and inter-area
mode frequencies are slightly different than scenario 1, in this
case being 1.80 Hz and 0.93 Hz, respectively. Similarly, two
discrete actions are required from CCs to reduce the amplitude
of the oscillation of the overall response.

Simulation results are shown in Fig. 5. Once again the
effectiveness of the DEOC is exhibited in the controlled
dynamics. However, just like in scenario 1, only a sub-optimal
solution is achieved. This is due to intrinsic deviations of the
linear model –used to define the switching function h(x)– with
respect to the actual nonlinear model of the system. However,
as expected, the sub-optimal switching leads to an oscillation
amplitude confined around the equilibrium point.

The operation of each controllable component is summa-
rized as follows:

CC1 : ∆P6 =


−4.20 MW if 1.442 s < t < 1.828 s
−41.65 MW if 2.335 s < t < 2.565 s

0 otherwise

CC2 : ∆P8 =


6.81 MW if 1.442 s < t < 1.828 s
38.16 MW if 2.335 s < t < 2.565 s

0 otherwise

IV. CONCLUSION

In this paper, the performance of the discrete control for
oscillations when considering more realistic control and load
scenarios is studied. The main novel features in this work
with respect to previous efforts on the DEOC problem are the
inclusion of a nonlinear model for the grid and the reduction of
required controllable components for discrete control actions.
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Fig. 5. 9-bus system dynamics comparison, scenario 2: (a) SG speeds,
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Both upgrades have been shown to only account for a small
deviation from the optimal solution proposed for a fully
linear model. The effectiveness of the DEOC operation is
demonstrated by means of simulations of the 9-bus system
for two highly loaded scenarios. Even though an optimal
solution is not achieved, in both cases the sub-optimal solution
significantly reduces the oscillation amplitude to be confined
in a small region around the equilibrium point. Future work
will take into consideration the inclusion of detailed models
for generators, e.g., the two-axis model, and its corresponding
controllers into the DEOC performance.
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