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Abstract—In this paper, we demonstrate the distribution of
real-valued power flow solutions and its application to the long-
term voltage stability. It is the first time in power engineering
we realize that even a small-scale IEEE standard power system
can admit a humongous number of real-valued solutions for a
single load and generation profile. For example, the IEEE 30-bus
system can achieve 25686 many different real-valued solutions at
a light loading condition. Furthermore, a mysterious class of
“false” power flow solutions is reported and analyzed rigorously
as legitimate numerical solutions. All solution sets investigated in
this paper are posted online associated with this paper to support
potential future applications [1]. Based on these extensive solved
power flow solutions, we exhibit their occurrence patterns and
distributions at different loading levels, and propose a long-term
voltage stability margin index to quantify the long-term voltage
stability of a given power flow condition. Numerical studies on
a 5-bus system and a 57-bus system show the feasibility and
effectiveness of the proposed index in assessing power system
long-term voltage stability margin.

Index Terms—Multiple power flow solutions, holomorphic em-
bedding based continuation, “short circuit” solution, distribution
pattern, long-term voltage stability

I. INTRODUCTION

The increasing integration of distributed energy resources

and demand responses provides great flexibility to operate

power grids in a more efficient manner. However, this flexibil-

ity can also alter the traditional load pattern and increase the

pattern diversity [2], creating a challenge for power grid plan-

ning and operation—keeping power flow balanced between

generation and load at all time scales.

Power balance equations (power flow equations) are used

in daily grid planning and operation to define and evaluate the

grid operating condition. Power balance equations can admit

multiple real solutions. The one that the grid is operated at

is usually called the high-voltage solution since the dynamic

power system is stable at this solution where all bus voltages

are close to one per unit. Other than the high-voltage solution,

most of the rest do not allow a stable and secure operation.

Still, their locations and distributions convey important infor-

mation about the underlying system, shown to be useful for
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both static and dynamical stability analysis [3], [4]. Finding

multiple real power flow solutions is not a trivial task. It

was computationally tractable only up to systems with 14

buses [5]. A recently developed technique, called holomorphic
embedding based continuation (HEBC) method [6], pushes

this boundary to medium-sized systems. Although there is still

a lack of theoretical proof to show whether the HEBC method

can find all real power flow solutions, in all verifiable cases

[6] HEBC method always gives complete solution sets. To

assess potential statistical properties of power flow solutions,

a few cases, i.e., IEEE 14, 30, 39 and 57 bus systems, are

adopted for a comprehensive investigation. Their solution sets

are posted online at [1] for any potential interests of research.

Among different potential applications of multiple real

power flow solutions, this paper focuses on the long-term volt-

age stability problem and proposes a stability margin index.

The commonly used voltage stability margin is defined in the

power space between the current operating condition and the

nose point, given a specific stressing direction to increase the

load and generation. Other existing voltage stability margin in-

dices in the literature usually rely on simplifying assumptions

on power flow equations [7], leading to potential inaccuracies

and errors. In this paper, we explore a minimum distance

in the voltage space between the high-voltage solution, i.e.,

the current operating condition, and all other real power flow

solutions to the same power balance equations. Without recent

advances in HEBC [6], previous work [8], [9] can only exploit

a nearby low-voltage power flow solution, which, in theory,

has not been proved to be the “closest” low-voltage solution.

Here we inherit a similar idea with a complete and more

comprehensive study of real power flow solutions. Compared

to existing voltage stability margin indices, the proposed index

is free of any pre-defined stressing directions, making it a

global index. In addition, the proposed index does not require

any simplifying assumptions on power flow equations. Still, a

detailed investigation to compare with other indices in terms of

accuracy, computational complexity, and scalability is needed

and will be part of our future work.

The rest of the paper is organized in the following way: Sec-

tion II introduces a class of power flow solutions, named ”short

circuit” solutions, that satisfy the power balance equations but

are not meaningful. Section III illustrates the number of power

flow solutions and their distributions. Section IV presents the

proposed voltage stability margin index and its application.

Section V gives the conclusion.
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II. “SHORT CIRCUIT” SOLUTIONS

A specific type of power flow solutions is observed.

These particular solutions satisfy the power balance equations,

namely the power injection model, and thus are the solutions

to the power flow problem. But they do not satisfy the

Kirchhoff’s Current Law (KCL) as explained in the following.

We refer to them as the “short circuit” solutions. A necessary

condition for the existence of “short circuit” solution is that:

a power grid has at least one transit-bus which is a special
PQ-bus with zero nodal power injection.

Consider the power balance equation at node-i,

Vi × I�i = Pi + jQi (1)

where Vi ∈ C is the complex voltage at node-i, I�i ∈ C is the

conjugate of complex current at node-i, Pi + jQi ∈ C is the

complex power injection at node-i.
If node-i is a transit-bus, then Pi + jQi = 0, which

suggests that either Vi = 0 or Ii = 01. When Vi = 0 and

Ii �= 0, an external current Ii is supposed to enter node-

i from somewhere. Since Vi = 0 at this point, the solution

suggests that the system is grounded at node-i. However, the

system is not physically connected to the ground at node-i.
Therefore, KCL fails at this solution. One can interpret this

“short circuit” solution as a feasible solution to the grounded

power flow problem at node-i. Reference [10] reported a

numerical problem caused by “short circuit” solutions, i.e.

voltage can be wrongly trapped at zero after clearing a short-

circuit fault, when using power injection model in dynamic

simulations.

Our studies show that “short circuit” solutions are more

likely to happen at a lighter loading level. For example, Fig. 1

shows the number of “short circuit” solutions with respect

to the load scaling factor2. When the load increases to a

certain level, they eventually disappear. But at low loading

levels, the number of “short circuit” solutions can be huge.

For instance, in Fig. 1(a), Case30 has at least 6849 “short

circuit” solutions at 10% loading level. A light loading level

usually admits much more “short circuit” solutions because

the constant loading line can intersect with many PV (QV)

branches for the grounded power flow problem.

“Short circuit” solutions can also occur when constant

impedance loads exist. These load nodes are transit-bus, and

thus can admit many such solutions at a light loading level.

A simple way to avoid “short circuit” solutions is to add a

small power injection, say, 10−5p.u.3, at each transit-bus. As

long as the power injection at each node-i in (1) is non-zero,

neither Vi nor Ii is zero.

III. NUMERICAL STUDY OF SOLUTION DISTRIBUTION

This section first illustrates that the number of power flow

solutions decreases with the increase of loading level. It is

1It is possible that both Vi and Ii vanish to zero. However, this is rather
rare and hasn’t been observed in our studies.

2The load scaling factor scales every complex-valued load in the system.
3In our simulations the power mismatch error is below 10−9 p.u. Hence a

10−5 power injection will not be confused by the error threshold.

0.1 0.2 0.3 0.4 0.5
Load Scaling Factor

0

1

2

3

N
um

be
r o

f S
ol

ut
io

ns

104

# actual load flow solution
# short-circuit solution

(a) Case30

0.2 0.4 0.6 0.8 1
Load Scaling Factor

0

500

1000

1500

N
um

be
r o

f S
ol

ut
io

ns

# actual load flow solution
# short-circuit solution

(b) Case39

Fig. 1: Number of Short-Circuit Solutions

then shown that under lightly-loaded conditions, the identified

solutions in each case are not randomly distributed, but exhibit

distinct patterns. A scrutiny on the identified solution sets in

terms of voltage magnitudes of PQ buses and reactive power

of PV buses is presented.

A. Number of Solutions at Different Loading Levels

It is expected that as the loading level increases, the

number of power flow solutions decreases, e.g. down to two

solutions right before the voltage collapse at the saddle node

as illustrated in Fig. 2. On the other hand, at light loading

levels, the number of solutions can be very huge. For instance,

Fig. 2(b) shows that 10% loading induces at least 25686
power flow solutions for Case30. This huge number, probably

even greater for lighter loading or larger cases, makes it very

challenging and less attractive to find all associated power

flow solutions because the system stability is usually of less

a concern under light loading conditions. At extremely heavy

loading conditions, however, the number of solutions can be

very small. Therefore, it is more practical and beneficial to

identify these solutions for stressed power systems.

B. Node Voltage Pattern

An interesting observation is that for each test case the

nodes can be clustered by a few special voltage patterns.

For example, Fig. 3 depicts four basic patterns that occur
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Fig. 2: Number of power flow solutions as loading level increases

in Case30, where each dot represents a voltage solution. The

horizontal and vertical axes respectively represent the real and

imaginary parts of the complex voltage. Table I summarizes

the clusters of nodes that exhibit similar patterns as shown

in Fig. 3. These structures persist as the loading condition

changes. A light loading level, i.e. 10%, is adopted here

since it gives a sufficient number of power flow solutions for

exhibiting potential statistical properties. A common pattern

omitted here is a fixed-radius circle which is associated with

each PV bus.
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Fig. 3: Voltage Patterns for Case30 at 10% Load (25686 Solutions)

TABLE I: Bus Grouping by Voltage Pattern of Case30

Patterns 1 2 3 4
Buses 12, 14-16 17-24 9,10,25-27,29,30 3,4,6,7,28

The 39-bus system and the 57-bus system also exhibit a few

distinctive voltage patterns. Usually, adjacent nodes are more

likely to share the same pattern, but it is not always the case.

Whether different patterns reveal local structural properties

of the system is an open question. But the persistence of

these patterns under different loading conditions may suggest

a relation with the network topology. Some of the patterns

are further depicted in Subsection-D with engineering limit

considerations.

To reveal the statistical characteristics of power flow solu-

tions, we discretized the voltage magnitude range [0, 1.1] p.u.
for 100 even intervals, and count the number of solutions

for each interval. Sample distributions are depicted in Fig. 4,

which exhibits persisting patters that are consistent with the

observations in Fig. 3.

IV. A LONG-TERM VOLTAGE STABILITY MARGIN INDEX

With the multiple real power flow solutions calculated by

the HEBC method, this section presents one application of

these power flow solutions on power system long-term voltage

stability assessment. Specifically, a stability margin index of a

N -bus system at a given load level PL is defined as follows:

m = min
j

(||VH − VL,j ||) (2)
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Fig. 4: Voltage Magnitude Distributions

where VH ∈ C
N is the only high voltage solution and VL,j ∈

C
N , j ∈ {1, 2, ..., n}, are n low-voltage solutions. m is the

proposed voltage stability margin index, and PL represents the

system total active load.

The conceptual interpretation of the proposed voltage sta-

bility margin index is presented in Sub-section A and the

numerical experiments are shown in Sub-section B.

A. Conceptual Interpretation of the Proposed Voltage Stability
Margin Index on a Two-bus System

Figure 5 shows a typical P-V curve from a two-bus system

with a constant power load connected to an infinite bus through

a line. All power flow solutions in the two-bus system are

illustrated, and the popular voltage stability margin index

defined by the distance between the nose point and the current

loading condition is discussed. Note that the definition of this

stability margin relies on the choice of stressing direction, i.e.,

which and how loads and generations are increased. Then,

the proposed voltage stability margin index is illustrated and

interpreted on the P-V curve. In contrast, the proposed voltage

stability margin index is a characterization of the given power

flow steady state, completely independent of any specific

stressing direction of generations and loads. This could be

particularly useful when power flow patterns change more

significantly and more frequently, such that defining very

few typical stressing directions, as used by today’s practice

for evaluation, is challenging. This could be true especially

for modern and future power grids dominated by massive

intermittent and undispatchable renewables.

Fig. 5: Illustration on voltage stability margin on P-V curve

Specifically, the proposed voltage stability margin index at

a given load level PL0 is defined as the distance between the

high-voltage solution VH0 and the only low-voltage solution

VL0 and is denoted as m0. As the system increases its loading

condition from PL0 and PL1, the margin index decreases from

m0 to m1. In a general large-scale power system, we assume

that there is only one high-voltage solution in the system

and all other solutions are low-voltage solutions. Therefore,

the proposed voltage stability margin index is the minimum

distance in voltage space between the high-voltage solution

and all other real power flow solutions to the same power

balance equations. Note that the proposed voltage stability

margin index does not rely on knowing the nose point in a

specified stressing direction, instead, it only depends on the

global properties of power balance equations, i.e., the real

solutions at the given load level.

B. Numerical Studies on 5-Bus and 57-Bus Test Systems
Numerical studies are conducted on two cases, i.e., a 5-bus

system and a 57-bus system, to demonstrate how the proposed

voltage stability margin index characterizes the distance be-

tween the current operating condition to the voltage stability

978-1-6654-6441-3/23/$31.00 ©2023 IEEE
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 19,2024 at 14:55:03 UTC from IEEE Xplore.  Restrictions apply. 



limit. The results are plotted as shown in Fig. 6. The horizontal

axis is the load scaling factor. Default loading conditions with

a load scaling factor of 1.0 in the two systems are 170 MVA

and 1295 MVA, respectively. The vertical axis is the proposed

stability margin index. For the 5-bus system (or the 57-bus

system), at the load scaling factor of 1.0, the system has one

high-voltage solution and 9 (or 605) low-voltage solutions.

The proposed voltage stability margin index, i.e., the minimum

distance in voltage between the high-voltage solution and all

low-voltage solutions, is 1.023 (or 1.222). System total load

is increased by scaling up all loads proportionally from the

default load level to the highest possible load at the nose point

over 12 identical steps. At each of these 12 steps, multiple real

power flow solutions are solved by HEBC, which are then used

for calculating the proposed voltage stability margin indices.

As a result, Fig. 6 shows how the proposed voltage stability

margin decreases when the load level increases.

It should be noted that the proposed voltage stability margin

always reaches zero when the system total load reaches the

maximum loading condition at the nose point. This is because

the saddle-node bifurcation occurs at the nose point, where the

last two real power flow solutions collapse, including a high-

voltage solution and a low-voltage solution. Another important

observation is that generally speaking, at a lighter loading

condition, there are a lot more real power flow solutions.

Extensive numerical studies show that the total time cost for

HEBC is roughly proportional to the number of real power

flow solutions. Therefore, it takes a longer time to calculate the

proposed voltage stability margin index at a lighter load level.

This is fine as power systems are less likely to have long-term

voltage stability issues at a lighter load level. When a power

system approaches its nose point, the load level is usually

high such that there are fewer real power flow solutions that

can be identified by HEBC relatively faster. This is desired

because the proposed voltage stability margin index can be

evaluated more frequently when the load level and risk of

voltage instability are both high.

V. CONCLUSION

The paper solves multiple real power flow solutions for

several standard IEEE test cases: Case14, Case30, Case39

and Case57. All investigated solution sets are posted online

with this paper. The existence of “short circuit” solutions is

pointed out, which represent a set of real power flow solutions

that do not satisfy the Kirchhoff Current Law. Numerical

techniques to avoid “short circuit” solutions are discussed. The

distribution patterns of multiple real power flow solutions are

visualized and analyzed. A long-term voltage stability margin

index based on multiple real power flow solutions is proposed

and numerical studies are conducted to show the feasibility

and effectiveness of this index.

In the future, the proposed voltage stability index will

be compared with other existing indices to figure out its

advantages and disadvantages. In addition, further research for

the application of multiple power flow solutions will also be

investigated, including (i) the geometric structure of power
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Fig. 6: The proposed voltage stability margin v.s. load increase

balance equations; (ii) advanced computational methods for

finding multiple power flow solutions; (iii) applications on

transient stability analyses.
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