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Abstract: Natural disasters cause significant damage to the electrical power infrastructure every year. Therefore, there is a crucial need to
reduce the vulnerability of the electric power grid against natural disasters. Distributed generation (DG) represents small-scale decentralized
power generation that can help reduce the vulnerability of the grid, among many other benefits. Examples of DG include small-scale photo-
voltaic (PV) systems. Accordingly, the goal of this paper is to investigate the benefits of DG in reducing the vulnerability of the electric power
infrastructure by mitigating against the impact of natural disasters on transmission lines. This was achieved by developing a complex system-
of-systems (SoS) framework using agent-based modeling (ABM) and optimal power flow (OPF). N-1 contingency analysis and optimization
were performed under two approaches: The first approach determined the minimum DG needed at any single location on the electric grid
to avoid blackouts. The second approach used a genetic algorithm (GA) to identify the minimum total allocation of DG distributed over
the electric grid to mitigate against the failure of any transmission line. Accordingly, the model integrates ABM, OPF, and GA to optimize
the allocation of DG and reduce the vulnerability of electric networks. The model was tested on a modified IEEE 6-bus system as a proof
of concept. The outcomes of this research are intended to support the understanding of the benefits of DG in reducing the vulnerability of
the electric power grid. The presented framework can guide future research concerning policies and incentives that can strategically influence
consumer decision to install DG and reduce the vulnerability of the electric power infrastructure. DOI: 10.1061/NHREFO.NHENG-1478.
© 2022 American Society of Civil Engineers.

Introduction

Natural disasters, such as storms, hurricanes, and earthquakes,
cause significant damage to the infrastructure and the built environ-
ment every year resulting in huge losses and repair costs. The
National Oceanic and Atmospheric Administration (NOAA 2021)

estimates that the US sustained 20 weather and climate disasters in
2021 where overall damage exceeded $1 billion. The total damage
from those 20 events exceeded $141 billion. Electric power gen-
eration and transmission is a major element of the infrastructure,
and the undisturbed availability of electric power is a necessity
of the modern world and a critical element of the economy (Ali
and El-adaway 2020). The disruption of the electric power service
caused by natural disasters affects thousands of homes and can dis-
able critical services such as hospitals. It is estimated that outages
due to weather-related events and other cases cost the US $28 to
$169 billion annually (ASCE 2020). As an example, extreme cold
weather in Texas in February 2021 caused rolling blackouts and
affected an estimated 4.5 million customers (Miller 2021). In
addition, customers that had electric power were faced with sub-
stantial electric bills due to exorbitant electricity rates created by
electric power market pricing mechanisms followed by the Electric
Reliability Council of Texas (ERCOT). Accordingly, there is a criti-
cal need to reduce the vulnerability of the electric power infrastruc-
ture against natural disasters and severe weather events.

Distributed generation (DG) represents an emerging technology
that can improve the reliability and resilience of the electric power
grid (Arghandeh et al. 2014; Gupta et al. 2019; Yang et al. 2020).
DG, typically associated with distributed solar generation (DSG) in
the form of photo-voltaic (PV) systems, can provide electric power
to complement conventional power from the grid when needed or
operate in isolated islands completely detached from the grid. The
increasing adoption of DG and DSG represents a shift from the
reliance on large-scale centralized generation to small-scale distrib-
uted generation. Small-scale DSG, defined by the EIA (2015) as
solar power resources with a capacity lower than 1 Megawatt, rep-
resents 33% of the total solar generation in the US. DSG is espe-
cially attractive in locations where solar energy is abundant and
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electricity rates are high. For example, California alone accounts
for 40% of distributed PV capacity, while the following nine
states account for 44%. The adoption of DSG is also motivated
by growing environmental awareness combined with governmental
incentives to install them.

There is a plethora of research that investigates the benefits of
DG and microgrids in improving the reliability and resilience of the
power infrastructure, both pre-and-post- disaster, from multiple
perspectives such as: microgrid operation for disaster recovery
(Abbey et al. 2014; Yuan et al. 2009); improving the resilience
of the electric grid against weather-related events by leveraging dis-
tributed resources (Arghandeh et al. 2014); designing restructured
electric power distribution networks with large numbers of DG to
improve reliability (Driesen and Katiraei 2008); improving resil-
ience by leveraging smart networked solar systems and storage
(Gupta et al. 2019); among others. Nosratabadi et al. (2017) present
a comprehensive literature review on the subject. However, there is
a lack of research that investigates the benefits of promoting DSG
on the resilience of electric power infrastructure as a complex
multidisciplinary problem that includes ABM, optimal power flow
(OPF), DG optimization, and reliability assessment. ABM is a
powerful technique that enables simulating complex systems in
a bottom-up approach by defining agents with simple rules and
behavior and observing the emergent behavior of the SoS. As
Siegfried (2014) points out: “A key property of complex systems
is that no single component controls the system behavior. Instead,
the system behavior results from multiple and manifold interactions
between the components. The term emergence refers to the fact that
the system’s overall behavior is not obviously derivable from the
behavior of its constituting components. Interactions between the
components have to be taken into account as well as effects of non-
linearity”. As such, ABM has been used in many applications to
simulate complex systems, and for simulating wholesale power
markets specifically, as described later in the background section.
By integrating ABM with OPF, supply and demand can be depen-
dent on (1) the adoption of DG by customers; and (2) the failure of
transmission lines impacted by natural disasters. This paper focuses
on transmission lines because they are prone to failure during natu-
ral disasters (Gao et al. 2017) and their failure can affect the supply
of power to consumers and the prices in the wholesale power mar-
ket. As such, the reasoning of this paper is that (1) natural disasters
such as hurricanes can cause transmission line failures; (2) transmis-
sion line failures affect the electric power market and infrastructure;
and (3) DG can alleviate demand during transmission line failure
and thus decrease the vulnerability of electric power market and
infrastructure against natural disasters such as hurricanes.

The layout of this paper will go through: (1) goal and objectives;
(2) background; (3) methodology; (4) results and analysis; (5) dis-
cussion; and finally (6) conclusion.

GOAL, Methodological Philosophy, and Value

The goal of this paper is to investigate the benefits of DG in reducing
the vulnerability of the electric power infrastructure. This research
focuses on how to optimize the allocation of DG across an electric
power grid to mitigate the impact of natural disasters on transmission
lines. This was achieved by developing a complex SoS simulation of
electrical power infrastructure and markets using agent-based mod-
eling (ABM) integrated with DG optimization. N-1 contingency
analysis and optimization were performed using two different ap-
proaches and compared. Both methods intend to ensure N-1 contin-
gency where the system can survive the loss of one component
which was imposed by the Federal Energy Regulatory Commission

(FERC) (Hedman et al. 2009; Poyrazoglu and Oh 2015). The first
approach is single-node optimization using an exhaustive search to
mitigate against the need for targeted blackouts following a natural
disaster. The purpose of the first approach is to determine the mini-
mum DG needed at any single location on the electric grid to avoid a
targeted blackout at a selected location. The second approach is en-
tire network optimization, which is performed using GA. The pur-
pose of the second approach is to calculate the minimum total
allocation of DG distributed across the electric grid to satisfy demand
at all nodes and avoid system blackouts. Comparing the results in the
first and second objectives is intended to show the capabilities of
integrating GA with ABM and OPF to perform global DG optimi-
zation for dynamic electric networks. ABM can grasp the economic
and engineering parameters of the electric power infrastructure and
market. OPF is used to calculate the power flow, generation commit-
ment, and locational marginal prices (LMPs). LMPs represent the
prices at each node on the grid and can vary depending on supply,
demand, and congestion in the grid. GA can provide a near-optimum
solution that reduces the vulnerability of the grid. In practice, the
methods may indicate how DG may be allocated if DG allocation
policies and decisions are made by a local utility versus a centralized
utility such as Independent System Operators (ISO), or even at the
state or federal level. The model was further tested a modified IEEE
6-bus system as a proof of concept (Tungadio et al. 2015; Khurshaid
et al. 2019; Mantawy and Al-Ghamdi 2003; Sharma et al. 2012). The
outcomes of this research support the understanding of the benefits
of DG. Ultimately, this research presents a holistic framework using
complex SoS simulation that combines ABM, OPF, reliability as-
sessment, power market economics, and DG optimization, to reduce
the vulnerability of the electrical power grid against natural disasters.
The framework can guide future research and models related to pol-
icies and incentives that can strategically motivate the adoption of
DG to improve the reliability of the electric power infrastructure.

Background Information

Disaster Management for Electric Power Infrastructure

The electric power service can be disrupted by natural disasters
such as earthquakes, hurricanes, storms, and tsunamis, in addition
to other causes such as equipment failure, operational errors, and
sabotage. Table 1 shows a summary of the frequency of blackouts

Table 1. Frequency and impact of blackouts

Cause Frequency

Average number
of customers

affected

Average size
of blackout
in MW

Earthquake 0.8 375,900 1,408
Hurricane/tropical storm 4.2 782,695 1,309
Ice storm 5 343,448 1,152
Wind/rain 14.8 185,199 793
Other external cause 4.8 246,071 710
Other cold weather 5.5 150,255 542
Operator error 10.1 105,322 489
Fire 5.2 111,244 431
Equipment failure 29.7 57,140 379
Tornado 2.8 115,439 367
Supply shortage 5.3 138,957 341
Intentional attack 1.6 24,572 340
Lightning 11.3 70,944 270
Volunteer reduction 5.9 134,543 190
Voltage reduction 7.7 212,900 153

Sources: Data from Hines et al. (2008); Wang et al. (2016).
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in the US between 1984 and 2006, and their causes (Hines et al. 2008;
NERC 2020; Wang et al. 2016). A substantial number of blackouts
are caused by natural causes. Among the natural causes, lightning
and wind/rain have the highest occurrences; while earthquakes,
hurricanes, and storms cause the largest blackouts and affect
the largest numbers of customers. In addition, severe weather con-
ditions were the predominant cause among 638 transmission out-
ages between 2014 and 2018 (ASCE 2021). Accordingly, the
continuous improvement of the reliability of the electric power
infrastructure against natural disasters is of critical importance.

Due to the substantial impact of natural disasters on infrastructure
and the built environment, there is a plethora of innovative research
related to disaster management from various aspects and disciplines.
Examples include big data analysis (Yu et al. 2018), social media
analytics (Wang and Ye 2018), leveraging the use of unmanned aerial
vehicles (Erdelj et al. 2017), and many other innovative research
efforts. As shown in Table 1, hurricanes have a significant effect
on the electric power infrastructure and affect the highest number
of customers. Accordingly, several research efforts have focused
on assessing the structural reliability of distribution systems such
as overhead lines and poles impacted by hurricanes and windstorms
(Bjarnadottir et al. 2013; Dunn et al. 2018; Salman and Li 2017). DG
can be suitable for increasing reliability against service disruptions
(Arghandeh et al. 2014; Gupta et al. 2019). They can maintain ser-
vice availability during natural disasters by operating in an island
mode. They can also be used as mobile sources of electric power
for emergency post-disaster recovery (Abbey et al. 2014; Yang
et al. 2020; Yuan et al. 2009).

Effect of Hurricanes on Transmission Systems

Components of transmission lines, such as towers and conductors,
are exposed to adverse weather conditions during natural disasters
such as hurricanes, typhoons, and tornadoes. Strong winds can
cause the collapse of towers and conductors. The majority of
weather-related transmission line failures in the US are attributed
to such events. It is estimated that 800 to 1,000 tornadoes occur
each and lead to extensive damage and failure of transmission
structures (Zhang et al. 2020; Langlois 2006). Accordingly, many
papers have focused on evaluating the impact of hurricanes on
transmission systems using methods (Liu and Singh 2009; Ma
et al. 2020), developing fragility curves, and improving the resil-
ience of transmission lines against hurricanes (Liu et al. 2020;
Moradi-Sepahvand et al. 2021).

Effect of Transmission Line Failure on Power Markets

Electric power markets are more complicated than other commer-
cial markets because of the special properties of electricity (Xiao
and Wang 2004). In addition to supply and demand dynamics,
power markets are largely affected by transmission systems consid-
ering congestion and transmission losses. Accordingly, nodal pric-
ing using locational marginal prices (LMPs), which are defined
as the marginal cost of supplying one additional unit of power
to a node, is an important aspect of power markets and allows
for efficient management of generation and transmission resources
(Vaskovskaya et al. 2018). Natural disasters, such as hurricanes,
typhoons, and tornadoes, can damage transmission lines (Zhang
et al. 2020; Langlois 2006). As such, natural disasters can affect
power markets when transmission lines are affected.

Resilience and Vulnerability

Many studies related to managing natural disasters focus on
the concepts of resilience and vulnerability. In simple terms, the

concept of resilience focuses on how well a community or system
can recover from the impact of stress (Bakkensen et al. 2017). The
ASCE (2021) defined resilience in Policy statement 518 as follows:
“Resilience is the ability to plan, prepare for, mitigate, and adapt to
changing conditions from hazards to enable rapid recovery of physi-
cal, social, economic, and ecological infrastructure”. Vulnerability
is associated with the susceptibility, exposure, and sensitivity of a
system to a threat (Bakkensen et al. 2017). Evaluation of environ-
mental vulnerability can be divided into three areas: (1) natural resil-
ience to hazard; (2) risk and exposure; and (3) acquired resilience
from previous events (Eid and El-adaway 2017c). Accordingly,
the concepts of resilience and vulnerability are related. The focus
of this paper is to capitalize on DG to mitigate the impact of natural
disasters. This can be considered as reducing the vulnerability of the
power infrastructures predisaster. This paper does not directly quan-
tify the resilience or the time to recovery. Rather, the model is
focused on mitigating the impact.

Complex Simulation Using ABM

ABM is a technique for developing complex simulations. It follows
a bottom-up approach that relies on interdependent agents to create
an emergent behavior of a complex SoS. The agents (1) have sim-
ple rules and behavior, (2) interact and affect each other, and (3) can
adapt and learn (Eid and El-adaway 2017c, 2018). Accordingly, the
interaction between the interdependent agents in ABM creates a
complex emergent behavior. ABM excels in creating an emergent
behavior of the system as a whole from the bottom-up approach of
defining multiple agents. This behavior can describe nonlinearity, is
not controlled by a single element, and is not necessarily easily
deducted from the single components of the system (Siegfried
2014). ABM has been used in many applications, such as simulat-
ing infrastructure systems (Batouli and Mostafavi 2014), occupant
energy consumption in buildings (Abraham et al. 2018; Azar and
Al Ansari 2017), construction safety (Choi and Lee 2018), bidding
strategies (Ahmed et al. 2016; Elsayegh et al. 2020), and disaster
management (Eid and El-adaway 2017c, 2018) among many other
applications. Table 2 shows selected examples of previous research
where ABM was used.

Power Market Simulation Using ABM

Agent-based computational economics (ACE), a specific example
of an ABM where agents interact in a market, is an ideal method to
study electrical power markets as it can simulate the complex in-
teraction between the stakeholders in the market while combining
the economic and electrical power engineering aspects (Tesfatsion
2006). Accordingly, the ABM method has been effectively used to
simulate the complex behavior of wholesale electrical power mar-
kets (El-adaway et al. 2020; Sun and Tesfatsion 2007). Wholesale
electric power markets involve a complex behavior emerging from
several stakeholders including utilities, generators, and consumers,
which can be integrated into ABM frameworks. Accordingly,
ABM has been used to develop testbed applications to study
competition between the agents, their learning behavior, the risk
associated with uncertainty in demand, and different market regu-
lations, among other aspects (Aliabadi et al. 2017a, b; Lopes and
Coelho 2018).

DG Simulation Using ABM

The shift to decentralized, distributed generation represents a
shift toward a more complex system of systems, which can be
simulated using ABM (Clausen et al. 2017; Howell et al. 2017).
The adoption of DG creates load fluctuations and seasonal loading.

© ASCE 04022052-3 Nat. Hazards Rev.
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The uncertainty in predicting demand due to the adoption of DG
is an obstacle faced by system operators. ABM can be used to
manage and control those grid disturbances with increased robust-
ness compared to conventional centralized methods (Khan et al.
2016). ABM can create integration and cooperation between DG
which results in a network that is more robust and reliable com-
pared to conventional centralized networks that rely on large power
plants solely (Phillips et al. 2006). Accordingly, this research cap-
italizes on the advantages of integrating ABM and DG to simulate

the benefits of DG in improving the reliability of the electric
power grid.

Meta-Heuristic Optimization Methods

In this paper, a genetic algorithm (GA) is used to optimize the size
and location of DG to reduce the vulnerability of electric power grids
against natural disasters. GA is classified as a meta-heuristic optimi-
zation method. In general, meta-heuristic optimization methods are

Table 2. Examples of previous research applications using ABM

Research area Objective References

Infrastructure
management

Simulate and assess integrated management of infrastructure networks Batouli and Mostafavi (2014); Bernhardt and
McNeil (2008); and Pereyra et al. (2016)

Test innovative financial structures for infrastructure projects Mostafavi et al. (2012a, b, 2014); and Mostafavi
and Abraham (2010)

Energy conservation and
simulation

Model occupant behavior in buildings Abraham et al. (2018); and Azar and Menassa
(2012)

Study energy conservation in buildings Azar and Al Ansari (2017)
Model the interaction between occupants and appliances Carmenate et al. (2016)
Investigate the effect of lightning sensors on energy use Norouziasl et al. (2019)

Transportation
engineering and urban
planning

Create traffic simulations Zhang et al. (2013)
Simulate roundtrip bus transit lines Huang et al. (2019)
Study the interaction between travel behavior and urban forms Du and Wang (2011)
Study the effect of driverless vehicles on energy use, emissions, and
parking use

Harper et al. (2018)

Assess walkability in cities Yin (2013)
Optimize road surface maintenance management based on travel time and
maintenance costs

Yu et al. (2019)

Simulating electric vehicles such as investigating the patterns of electric
vehicle ownership and driving activity to enable strategic deployment of
charging infrastructure

Sweda and Klabjan (2015)

Water management Simulating water resources planning problems Berglund (2015)
Investigate the effect of various factors such as demographics, household
characteristics, and social influence on the adoption of residential water
conservation technology

Rasoulkhani et al. (2017, 2018)

Assess the behavior of users for water demand management in river basins Xiao et al. (2018)

Project scheduling,
performance, and
productivity analysis

Simulate compensatory management to achieve distributed coordination of
schedule changes

Kim and Paulson (2003)

Study the impact of crew composition and project schedule on knowledge
sharing and task durations

Kiomjian et al. (2020)

Simulate the interactions between construction crews for decision making
and performance analysis

Kedir et al. (2020)

Investigate the interaction of human and organizational factors to study
construction performance

Du and El-Gafy (2012)

Simulating randomness and uncertainty in crew performance and motivation Raoufi and Fayek (2018, 2020)
Evaluate collaboration between inter-organizational teams Son and Rojas (2011)
Simulate construction sites to evaluate labor efficiency Watkins et al. (2009)
Evaluate the uncertainty and performance of integrated project management
in complex projects

Zhu and Mostafavi (2015, 2016, 2018)

Construction safety Simulating workers’ unsafe behavior to study socio-cognitive processes and
their interaction with the environment in shaping safety behaviors

Choi and Lee (2018)

Bidding Study bidding strategies, interactions between bidders, and learning
capabilities

Ahmed et al. (2016); Asgari (2016); Awwad et al.
(2015); and Elsayegh et al. (2020)

Simulate negotiations in public-private partnership projects Zhu et al. (2016)

Disaster management
and evacuation of
buildings

Investigate disaster recovery strategies and economic resilience Ahmed et al. (2016); and Eid and El-adaway
(2017a, b, 2018)

Study the impact of infrastructure service losses due to disasters on
households

Esmalian et al. (2019)

Simulate the emergency response of ambulances during disasters Koch et al. (2020)
Analyze building evacuation Liu et al. (2016); Pan et al. (2012); and Smith and

Brokaw (2012)

© ASCE 04022052-4 Nat. Hazards Rev.
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widely used for optimizing complex problems in many fields. Most
meta-heuristic optimization methods are inspired by nature, involve
stochastic behavior, do not require gradients, and have adjustable
parameters (Boussaïd et al. 2013). There are many meta-heuristic
methods such as genetic algorithms, simulated annealing (SA), Tabu
search (TS), particle swarm optimization (PSO), ant colony optimi-
zation (ACO), harmony search (HS), artificial bee colony (ABC),
cuckoo search algorithm (CSA), shuffled frog leaping algorithm
(SFLA), shuffled bat algorithm (SBA), plant growth simulation al-
gorithm (PGSA), biogeography based optimization (BBO), firefly
algorithm (FA), and imperialist competitive algorithm (ICA), among
other techniques and variations (Abdmouleh et al. 2017).

The GA is a heuristic optimization technique that is inspired by
evolution and survival of the fittest. GAs have been used in count-
less applications and research such as water resources planning
(Nicklow et al. 2010), construction planning and resource alloca-
tion (Hegazy 1999), disaster management (Eid and El-adaway
2017a), optimizing the maintenance cost of bridges (Ghodoosi
et al. 2018), among many others. It was also used in many papers
to optimize DG allocation problems under different considerations
(Abdmouleh et al. 2017; Ganguly and Samajpati, 2015; Pisica et al.
2009). While GA is considered the most applied optimization tech-
nique in solving problems related to DG placing and sizing, many
other optimization methods such as simulated annealing and par-
ticle swarm were applied to grid optimization and DG optimization
(Abdmouleh et al. 2017). However, there is limited research that
combines hybrid heuristic and OPF optimization to perform two-
step optimization of DG allocation. Few papers presented hybrid
GA and OPF methods to investigate the capacity of distributed sys-
tems for new DG systems (Harrison et al. 2007, 2008), and to min-
imize the cost of active and reactive power using DG (Mardaneh
and Gharehpetian 2004). In this paper, GA is used because (1) it is a
robust method that has been used in many applications; (2) it has
been previously used as a hybrid method with OPF; and (3) there is
a technical proximity between ABM and GA because solutions in
GA are represented as chromosomes which can be easily linked to
the parameters of the agents. This allows seamless integration and
cross-validation between them (Eid and El-adaway 2021). Still,
there is a need for future research comparing hybrid meta-heuristic
techniques as related to the problem presented in this paper.

Methodology

This paper follows an interconnected multistep methodology as
follows: (1) development of the ABM where the agents are defined
according to the entities in wholesale power markets and the rela-
tionships between them; (2) development of a DC-optimal power
flow (DC-OPF) optimization solver; (3) reliability analysis and op-
timization are performed using: (3.1) single-node optimization, and
(3.2) global optimization using GA; (4) defining a proof of concept
to verify and test the behavior of the model; and (5) development of
the demand parameters used in the proof of concept. The following
subsections present each step.

Development of the ABM

The development of an ABM is a bottom-up process that begins by
defining agents with simple rules and behavior. The agents are in-
terconnected and can interact within their defined relationships.
The collective behavior of the agents creates an emergent behavior
of SoS. The design of the SoS framework is outlined in Fig. 1. The
framework follows the structure of wholesale power markets (Sun
and Tesfatsion 2007). There are two main types of agents in the
developed ABM: (1) LSEs, which represent utilities that are located

at nodes, buy power from generators, and sell it to their customers;
and (2) generators, which generate and sell power to the LSEs.
These agents interact in a wholesale power market which includes
(3) nodes, which are locations in the electrical power grid such as
cities or towns; and (4) transmission lines, which connect the nodes
and transfer power between them.

The LSEs have an initial number of customers that do not have
DG. Consumers at an LSE can install DG and activate it in an iso-
lated island mode when needed. Accordingly, when a natural dis-
aster strikes and the supply of electric power is limited, consumers
who have DG can rely on their DG in an isolated mode that is com-
pletely detached from the electric grid. Accordingly, the objective
of the framework is to determine the allocation of DG to an LSE
needed to mitigate the impact of natural disasters on a transmission
line and maintain electric power service availability. To calculate
the flow of power in the network, the simulation is connected to
an OPF solver through an interface which translates the data in the
simulation to the OPF solver and feeds the results back into the
simulation. The interaction between the agents in the simulation
results from the collective effect of the economic relationships be-
tween them, the calculation of the OPF in the network, and the
allocation of DG. The framework offers a flexible and dynamic
testbed to investigate different strategies that capitalize on DG
to reduce the vulnerability of electric power grids against natural
disasters.

DC-OPF

A DC-OPF approach is used to calculate the optimal power flow
in the network (Sun and Tesfatsion 2007). The following two sub-
sections clarify: (1) Why a DC-OPF problem is used, and (2) the
formulation for the problem.

Reason for DC-OPF

Planning and managing electric power grid resources requires
determining the optimum allocation of resources, a topic that is
covered by a plethora of research (Frank and Rebennack 2016;
Padhy 2004; Sheblé 1999). One of the simplest approaches can
be formulated as an economic dispatch (ED) problem, which de-
termines the optimum allocation of generators considering their
generation cost while minimizing overall network costs. However,
there may be a need to consider many additional constraints de-
pending on the planning horizon and the required level of complex-
ity. For example, there may be a need to consider when to start and

Fig. 1. Outline of the ABM framework.
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shut down generators considering the associated minimum uptime/
downtime time and startup costs, which extends to a unit commit-
ment (UC) problem. There are also additional generation con-
straints that can be considered such as ramp rates which define
the maximum change of generation output per unit time. There
is also a need to consider transmission properties and constraints.
At the least, there may be a need to consider the maximum opera-
tional capacity of transmission lines. There is also a need to con-
sider transmission losses which, in broad terms, energy consumed
during the process of moving power from generation to load (Wong
2011). Such requirements for more detailed analysis develop into
OPF problems which also have many variations in formulations
(Wong 2011). In this paper, a DC-OPF formulation adopted by
Sun and Tesfatsion (2006) is used because it fits the requirements
of the developed model for the following reasons: (1) it determines
the optimum allocation of generators considering their cost param-
eters and maximum capacities; (2) it calculates the power flow in
transmission lines considering their maximum capacities and react-
ance which is important to study the effect of transmission line fail-
ure during natural disasters; (3) it minimizes losses using a penalty
function; (4) there is no need to consider time-dependent con-
straints such as ramp rates; and (5) it is computationally fast enough
considering that large numbers of iterations are required for the DG
optimization performed in this paper.

Design and Formulation

It calculates the commitment of each generator and power flow in
each transmission line based on the cost for each generator, demand
at each LSE based on the number of customers, and transmission
parameters by minimizing the total network cost and losses. As
shown in Fig. 1, the ABM is connected to an interface that trans-
lates the parameters of the ABM to a DC-OPF problem and feeds
the results back into the model. The supply is defined by the gen-
eration parameters, ag and bg, for each generator g, as shown in
Eq. (1), where Pg is the active power, in megawatts (MW), supplied
by generator g. The generation parameters and constraints depend
on the type of the generator such as coal, nuclear, or natural gas
plants, and the maximum capacity of the generators, as will be
shown in a later subsection of the methodology. The demand is
determined at the LSE level according to the number of customers
and the average demand per customer at each node, which are
also explained in a later subsection. The objective function of
the DC-OPF optimization is shown in Eq. (1), where δ refers to the
phase angles at the nodes and π refers to a penalty constant
to minimize the phase angles between the nodes considering the
reactance of the transmission lines, i.e., minimize the reactive power
losses. Accordingly, the constraints of the problem are: (1) node bal-
ance such that the sum of the generation, demand, and power flowing
in or out of each node is equal to zero, as shown in Eq. (2); (2) gen-
eration capacity constraints for each generator as shown in Eq. (3);
and (3) transmission line constraints as shown in Eq. (4)

Minimize∶ ag þ bgPg þ π
X
km

½δk − δm� ð1Þ

Subject To:
- Node balance constraints for each node (k):

X
j∈Jk

Pj −
X
g∈Gk

Pg þ
X

Pkm ¼ 0 ð2Þ

- Generation constraints for each generator (g):

Pg;min ≤ Pg ≤ Pg;max ð3Þ

- Transmission line constraints for each transmission line (km):

jPkmj ≤ Pkm;max ð4Þ
where ag½$=MW:h�& bg½$=MW2:h� = generator parameters such
that Costg ¼ agPg þ bgP2g; Pg = generator commitment for gener-
ator (g); Pj = demand for LSE ( j); π = penalty constant; δk = phase
angle at node (k); Pkm = power flow in transmission line from node
(k) to node (m).

The DC-OPF problem is solved using dual stage optimization
(Goldfarb and Idnani 1983). The results of the optimization prob-
lem are the commitment of each generator (Pg), the power flow in
each transmission line, and the LMP at each node. The results are
then fed back into the agents in the ABM. The model is recalculated
every hour in simulation time. Overall, by defining the ABM and
solving the DC-OPF which includes the economics of the electrical
power market, the SoS results in a dynamic behavior that allows
it to be used as a testbed to perform a holistic assessment using
dynamic grid parameters and configurations.

DC-OPF Optimization Method

The DC-OPF formulation is solved using a dual stage optimization
method proposed by Goldfarb and Idnani (1983). It is suitable to
solve the DC-OPF optimization problem as supported by previous
literature (Sun and Tesfatsion 2007). The problem is a positive def-
inite quadratic problem subject to linear equality and inequality
constraints. The dual-stage method is efficient and numerically
stable. It relies on the unconstrained minimum of the objective
function as the starting point and utilizes Cholesky and QR factor-
izations to update the minimum of the objective function.

Optimizing for Disaster Management

The optimization approach in this research intends to determine the
location and number of DG. It is assumed that any transmission
line can be damaged during natural disasters and therefore limit the
power flow in the grid. When the grid is unable to meet the total
demand, system operators may need to strategically reduce power
to parts of the system instead of risking a complete blackout of the
entire grid, which is a measure referred to as load shedding, or roll-
ing blackout, or brownout, depending on the procedure (Agarwal
and Khandeparkar 2021; Liu et al. 2015; Tofis et al. 2017). The
method presented in this research proposes and compares two
perspectives to allocate DG at one node or several to mitigate
the disruption caused by the failure of transmission lines.

Method 1: Optimizing at a Single Node

The purpose of the optimization approach in the first method of to
calculate the minimum number of DG to place at one node to
(1) mitigate the effect of a damaged transmission line; and (2) avoid
a complete system blackout or the need for a targeted blackout at
the problematic node. The outline of the algorithm for Method 1 is
shown in Fig. 2.

The algorithm assumes that each transmission line is susceptible
to failure in separate scenarios per line. In each scenario, a trans-
mission line is considered completely damaged, and the electric
network is recalculated to determine its feasibility, i.e., whether
the demand from the LSEs can be satisfied. If the demand cannot
be satisfied, the algorithm iterates each LSE to find which one
would make the network feasible again if power to the determined
LSE would be cut off to avoid a complete grid blackout instead.
The algorithm then proceeds to search for the minimum number
of DG to allocate to the determined node in the previous step,
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which would satisfy the feasibility of the electric grid. The algo-
rithm then proceeds to iterate over each transmission line to de-
termine the required DG to mitigate against the failure of the
targeted line. Ultimately, the outputs of the scenarios are cross-
referenced to determine the number of DG at each node needed
to avoid the failure of any transmission line at any time. It should
be noted that the algorithm is integrated into the ABM model,
which means that the allocation of DG would affect the electric
power market economics of the entire grid including the supply of
all the generators, the demands from all LSEs, and the LMPs
across the nodes.

Method 2: Network Optimization Using Genetic
Algorithm

The purpose of Method 2 is in the same direction as Method 1 con-
cerning that it intends to mitigate against the failure of transmission
lines subjected to natural disasters and avoid blackouts. However,
in Method 2 the number of DG is optimized across the entire grid as
opposed to a single node at-a-time. This can help achieve a lower
number of DG at the cost of spreading them across many locations.
To achieve that objective, an ad-hoc solver was developed using
GA and integrated into the ABM model. A metaheuristic optimi-
zation layer using GA is integrated on top of the ABM and OPF.
GA is a preferred method because there is a technical proximity
between ABM and GA that allows seamless integration between
them (Eid and El-adaway 2021). Specifically, the parameters of
the agents in the ABM can be easily integrated in a GA as chro-
mosomes and optimized in an iterative evolutionary process.
Collectively, ABM, OPF, and GA can be integrated in a multilayer
DG optimization approach that fulfills the need for simulating and
optimizing dynamic electrical networks as opposed to a conven-
tional static grid model (Abdmouleh et al. 2017). As shown in
Fig. 3, the general steps of a GA are as follows: (1) initialization:
An initial population of solutions is generated using chromosomes
where each gene is a variable in a feasible solution of DG allocation
of Node i; (2) selection: The best solutions in the population are
kept and the rest of the solutions are omitted to mimic survival of
the fittest; (3) cross-over: The genes of the selected solutions are
mixed in a cross-over to create new solutions with mixed genes
from the best solutions similar to the inheritance of genes from pa-
rent to offspring; and (4) mutation: The variables in a few solutions
are randomized to create new solutions outside of the search area of
the current population of solutions to escape possible local minima
and attain a global minimum. The mutation step is not performed
on every iteration of the GA; it is performed according to a preset
probability that is usually low and tweaked according to the prob-
lem. The loop is then repeated until a stopping criterion is reached,
which can be a maximum number of epochs.

The GA and ABM are integrated seamlessly at the agent level.
The list of numbers of DG for the LSEs in a grid represents a sol-
ution or a chromosome in the GA, as shown in Fig. 3. GA opti-
mization is performed for each transmission line in the electric

Fig. 3. Outline of evolutionary algorithm.

Fig. 2. Outline of the algorithm for method 1.
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grid as shown in Fig. 4. Each transmission line is considered non-
operational in a separate scenario similar to method 1. If discon-
necting a line renders the network infeasible, then the optimization
is performed to determine the number and location of DG to make it
operational again. The optimization goes through all the steps of a
GA as previously described and illustrated in Fig. 3. The algorithm
loops through all the scenarios and returns an optimized allocation
of DGi, for every node (i), that can effectively mitigate the failure
of any transmission line

Minimize∶ X
i

DGi ð5Þ

where:

0 ≤ DGi ≤ Customersi

Proof of Concept

The developed model is applied on a modified IEEE 6-bus system
as proof of concept to verify its behavior and functionality and to
test the optimization model. Many previous papers used 6-bus sys-
tems to test their proposed models, such as optimizing reactive
power in power grids (Mantawy and Al-Ghamdi 2003; Sharma
et al. 2012) for example among many others. Research related
to DG also tested their models using 6-bus systems. For example,
Leeton et al. (2010) presented a solution of reactive power flow
optimization for electric power distribution systems integrating

with distributed generating and tested it on a 6-bus system.
Nazari-Heris (2020) proposed a robust energy management frame-
work of integrated power infrastructure and gas networks consid-
ering the effect of renewable energy sources and gas/nongas fired
power generation plants and applied it to a 6-bus system. More spe-
cifically on the topic of this paper, several papers tested models
studying the resilience and vulnerability of the power infrastructure
using 6-bus systems. Panteli and Mancarella (2015) used an IEEE
6-bus system to model the resilience of critical electrical power in-
frastructure to extreme weather events using a sequential Monte-
Carlo-based time-series simulation. Yang et al. (2018) proposed
a quantitative resilience assessment framework for power transmis-
sion systems operated under typhoon weather and tested it on a
modified IEEE 6-bus system. Kiel and Kjølle (2019) presented
a method to model transmission line failure rates, considering both
protection system reliability and extreme weather exposure, and
applied it to an IEEE 6-bus system. Yu et al. (2021) proposed
an optimal restoration strategy, considering the resilience index
of power transmission systems in restoration processes, and applied
it to a 6-bus system. As such, a 6-bus system is a feasible test bed
for this paper based on previous literature. Still, the model is easily
scalable to larger networks by adding more nodes, transmission
lines, LSEs, and generators. However, a 6-bus system avoids un-
warranted complexity and allows streamlined dissemination and
easier understanding of the results.

The parameters of the proof of concept rely on actual data ac-
quired from several sources. The parameters of the case concerning

Fig. 4. Outline of the algorithm in method 2.
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electric demand and pricing parameters rely on real data published
by the EIA (2020). The parameters for the generators are based
on data acquired from the Tennessee Valley Authority (TVA). The
parameters are representative of the average supply and demand in
the US. However, they can be easily modified for specific locations
and markets. A representation of the grid is shown in Fig. 5. It
includes six nodes, five generators, six LSEs, and seven transmis-
sion lines. Table 3 shows the parameters of the generators, which
include their type, the supply parameters ag and bg, and the maxi-
mum generation capacity. Each LSE is configured to have an initial
400,000 customers each. It should be noted that the number of cus-
tomers is dynamic as customers will detach if they install DG and
activate them in an isolated mode. When an LSE is affected by the
failure of a transmission line, DG will be used in isolation from the
grid, and therefore the number of customers connected to their
LSEs will be lower. The demands for each LSE are then calculated
during the execution of the simulation based on the updated num-
ber of customers. The transmission lines were set to have a max
capacity of 400 MWand a reactance of 35 Ω. Reactance represents
the opposition of a transmission line to flow which is affected by its
material and length. Both the reactance and the capacity affect the
flow of power in the grid between the nodes.

Equilibrium of Supply and Demand

The supply and demand parameters for the generators and LSEs,
respectively, are included in the formulation of the ABM and the
DC-OPF problem. The equilibrium between the supply and de-
mand determines the amounts of electric power and their prices
through the DC-OPF problem, as shown in Fig. 6. The generation
parameters ag and bg, which define the supply curve for each gen-
erator, are based on the type of the generator, i.e., coal, natural gas,
or nuclear. They are estimated based on data acquired from the

Tennessee Valley Authority (TVA), as shown in Table 3. On the
other hand, the demand at each LSE is determined by the number
of customers connected to the LSE and who do not have DG, and
the average hourly demand per customer. When the customers who
have DG activate them, they are considered detached from their
LSEs, which creates a shift in demand, as shown in Fig. 6. The
assumption that customers have a fixed demand in this simulation
follows the logic that electric power is very price-insensitive in the
short term as proven by previous research (Burke and Abayasekara
2018; Lijesen 2007). In addition, it would not be expected that
customers would reduce their electric power demands in response
to a natural disaster immediately without intervention, especially
for unavoidable load requirements. For example, when Texas was
faced with unexpected cold weather and power outages in early
2021, electrical power was critical for heating (Miller 2021).

Demand Parameters

The average hourly demand per customer was calculated from the
electrical power sales data published by the US Energy Information
Administration (EIA 2020). The data includes monthly electricity
demand quantities, electricity rates, and the number of customers.
A histogram of the residential hourly sales per customer is shown
in Fig. 7(a). The data available for the residential sector for all
states was used to calculate the mean demand per customer, which
was found to be 1.283 kWh/Hour/Customer. This translates to a
monthly average of approximately 923 kWh/Month/Customer,
which is a reasonable monthly usage. This calculated average

Fig. 5. Grid layout for the case study.

Table 3. Generator parameters

Generator Type
a
� $
MW:h

�
b
� $
MW2:h

�
Max capacity

(MW)

1 Natural gas 29.77 0.0009674 700
2 Coal 13.71 0.0011989 450
3 Nuclear 3.75 0.0000958 2,000
4 Coal 13.71 0.0011989 240
5 Natural gas 29.77 0.0009674 700

Fig. 6. Equilibrium of supply and demand showing a shift in demand.
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demand does not account for the variation in demand during the
day. A typical hourly variation is shown in Fig. 7(b) (EIA 2020).
Accordingly, a factor of 1.2 was used to scale up the data to sim-
ulate maximum congestion during the day.

Tools and Software Used

The model was developed entirely using the programming lan-
guage Python, which is a popular and well-established environment
for scientific and engineering applications. Development relied
on free and open-source development environments such as Micro-
soft’s Visual Studio Code and Jupyter Notebooks (Kluyver et al.
2016). A summary of the tools and software used is shown in
Table 4. The model relies entirely on open-source packages that
are freely available. The ABM, OPF, and GAwere developed from
scratch ad-hoc using Python.

Results and Analysis

Single-Node Optimization

The results of the proof of concept for the percentage allocation
of DG, demands, and generator commitments are shown in
Tables 5–7, respectively. As shown in Table 5, the results show that
scenario 2 did not affect the stability of the grid. However, the
remaining scenarios affected the grid, and the DG was needed
to mitigate against the failure of transmission lines. Each scenario
was found to have singular solutions, whereas two scenarios were
found to have two possible solutions each: Scenario 4 can be solved
by allocating 62% DG at LSE 1 or LSE 4, and Scenario 5 can be
solved by allocating 22% at LSE 5 or LSE 6. In total, the entire grid
may be optimized against the failure of any line by allocating a

total of 640,000 units. It is assumed in Tables 6 and 7 that DG
is allocated at LSE 4 and LSE 6 to mitigate scenarios 4 and 5.
By referring again to the configuration of the grid, the allocation
DG at the determined LSEs is expected. For example, it is expected
that a failure in the transmission lines of scenarios 1 and 3 would
affect LSE 1, which was found to limit the maximum demand at
62% and 36% respectively. Similarly, LSE 6 was affected in

Fig. 7. (a) Histogram of hourly sales per customer; and (b) variation in hourly demand.

Table 4. Tools and software used

Name Description Reference

Python Programming language Millman and Aivazis (2011); and Oliphant (2007)
Numpy Numerical methods Oliphant (2006); and Van Der Walt et al. (2011)
Matplotlib and Seaborn Visualization Hunter (2007); and Waskom et al. (2018)
Pandas Data manipulation McKinney (2011)
Statsmodels and Linearmodels Statistical analysis Seabold and Perktold (2010); and Sheppard (2017)
SciPy Scientific computing Virtanen et al. (2020)
Networkx Network analysis and visualization Hagberg et al. (2008)
VSCode and Jupyter Notebooks Code editing/development —

Table 5. DG allocation

Scenario LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6

Line 1 62% 0% 0% 0% 0% 0%
Line 2a 0% 0% 0% 0% 0% 0%
Line 3 36% 0% 0% 0% 0% 0%
Line 4b 62% 0% 0% 62% 0% 0%
Line 5b 0% 0% 0% 0% 22% 22%
Line 6 0% 0% 0% 0% 0% 36%
Line 7 0% 0% 0% 0% 0% 36%
Maximum 62% 0% 0% 62% 0% 36%
aScenario does not require DG.
bScenario has two possible solutions.

Table 6. Total demand at LSEs in MW

Scenario LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6

Line 1 234.02 615.84 615.84 615.84 615.84 615.84
Line 2 615.84 615.84 615.84 615.84 615.84 615.84
Line 3 394.14 615.84 615.84 615.84 615.84 615.84
Line 4 615.84 615.84 615.84 234.02 615.84 615.84
Line 5 615.84 615.84 615.84 615.84 615.84 480.36
Line 6 615.84 615.84 615.84 615.84 615.84 394.14
Line 7 615.84 615.84 615.84 615.84 615.84 394.14
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scenarios 6 and 7, where the maximum demand needed to be
reduced to 36% for each. By allocating the cumulative maximum
over all scenarios, the entire grid can survive the impact of natural
disasters on any line. Table 6 shows the results for the demands at
the LSEs. The resulting changes in demands are consistent with the
allocation of DG shown in Table 5, such as LSE 1 in Scenarios 1
and 3, and LSE 6 in Scenarios 6 and 7. The generators were af-
fected by the disruptions as shown by their commitments in Table 7.
The results show a change in the commitment of each generator
according to the flow of power when a line is affected. A notable
example is the commitment of Generator 1 is highest when Line 2
is disconnected. This may be due to the fact that Node 2 is no lon-
ger receiving power from Node 3 when Line 2 is disconnected. This
may also be confirmed by the reduced commitment of Generator 3.
Several similar observations can be made by observing the results,
which show the complex dynamics of the power infrastructure and
market. Also, it shows that relieving the demand using DG, com-
bined with the dynamics of the wholesale power market, can reduce
vulnerability to natural disasters.

Network Optimization Using GA

The optimization approach using a GA enabled the optimization of
the entire network to determine the minimum DG allocation over
all LSEs that would mitigate the loss of any transmission line.
Compared to the previous method, the GA algorithm was designed
to find feasible solutions that mitigate the failure of any transmis-
sion by optimizing over all the nodes. The population size was set
to 100 and the stopping criteria for the GA was set to 50 Epochs.
This configuration was found to be suitable to achieve a near-
optimum solution is achieved. The convergence of the optimization
is shown in Fig. 8. The evolutionary behavior of the GA can be seen
in the convergence of the population as the best solutions are kept
and the nonsuitable solutions are removed in every epoch. The best
solution was achieved quickly at Epoch 22 with a total DG require-
ment of 395,873 units.

Table 8 shows the optimized DG allocation size and percentage
for each LSE. The optimization algorithm found an allocation of
DG that is better distributed and lower than the allocation resulting
from the one-node-at-a-time optimization in the previous method.
By strategically allocating DG across the grid, the effect of natural
disasters on transmission lines was mitigated with fewer resources:
The total number was 395,873 using the genetic optimization ver-
sus 640,000 using the previous method of optimizing single nodes.
Further, as shown in Table 9, the distribution of the generator com-
mitment is close to the average results from the previous method.
Also, the average total generation in the previous method was
3,499 MW and in the GA method it was found to be 3,085 MW.
Although the total demands from both methods are therefore close,
the GA achieved a better distribution of DG. It can be seen the
optimized solution allocated most DG at LSE 1, LSE 4, and
LSE 6, which are the same LSEs identified in the single-node

optimization approach. Overall, the results show that optimizing
the entire network, combined with the capabilities of ABM, has
resulted in less DG needed to mitigate the effect of natural disasters
on transmission lines.

Although the GA reached a minimum allocation of DG, the is-
sue of the LMPs requires a deeper analysis. Fig. 9 shows separate
plots for the average LMP and variation in the LMP as the differ-
ence between the highest and lower LMPs, for each of the critical
transmission lines. It can be seen that although the GA achieved a
near-optimum DG allocation minima, the best solution is associ-
ated with the highest LMP, and in some cases high variations in
LMPs between the nodes in the network. In some cases, such as
line 3 for example, a lower average LMP may be achieved with
minimal addition of DG beyond the optimum solution. The cost
of installing DG at different locations could be taken into consid-
eration to develop multiobjective optimization that considers min-
imizing the variations in LMPs in conjunction with the cost of
installing DG, which is beyond the scope of this paper. However,
even considering that limitation, the effect of LMPs should be
taken into consideration to mitigate against natural disasters while

Table 7. Generator commitments

Scenario
Generator

1
Generator

2
Generator

3
Generator

4
Generator

5

Line 1 0 215.84 2,000 449.86 647.52
Line 2 547.52 450 1,600 450 647.52
Line 3 159.98 450 2,000 215.84 647.52
Line 4 165.7 450 1,600 450 647.52
Line 5 295.04 450 1,668.32 450 696.2
Line 6 295.04 450 1,668.32 450 609.98
Line 7 295.04 450 2,000 450 278.3

Fig. 8. Convergence of the GA.

Table 8. Optimized allocation of DG

LSE # Allocation percentage

LSE 1 42.43%
LSE 2 0.11%
LSE 3 0.45%
LSE 4 19.60%
LSE 5 1.11%
LSE 6 35.27%

Table 9. Generator commitments

Scenario
Generator

1
Generator

2
Generator

3
Generator

4
Generator

5

Line 1 0 427.24 2,000 450 208.31
Line 3 119.72 450 2,000 307.52 208.31
Line 4 164.84 450 1,812.41 450 208.31
Line 5 0 392.44 1,813.09 272.39 607.63
Line 6 0 392.44 1,813.09 272.39 607.63
Line 7 0 450 2,000 426.56 208.99
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Fig. 9. GA population by transmission line failure: (a) average LMP versus DG allocation; and (b) variation in LMP versus DG allocation.
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avoiding exuberant electricity rates for customers. The results of the
GA show that this can be achieved by strategically motivating the
best allocation of DG that results in reasonable real-time electricity
rates for customers.

Discussion

The framework developed in this model combined ABM, economic
of supply and demand in wholesale power markets, OPF optimi-
zation, and reliability assessment to create a complex SoS and in-
vestigate the requirements for DG to mitigate the impact of natural
disasters. The results show that the developed approach can capi-
talize on the benefits of DG to reduce the vulnerability of the
electric power grid. Two optimization methods were used in this
research to optimize the use of DG and mitigate the impact of natu-
ral disasters on transmission lines. The first method involved the
allocation of a minimum number of DG at one location on the grid
such as to avoid a targeted blackout following the failure of a trans-
mission line. In practical application, the calculated number of DG
may be deployed post-disaster to the determined location on the
grid to meet demand and recover the stability of the electric grid.
The results of this method also show that a few selected locations
can be assigned an optimized number of DG pre-disaster to miti-
gate the loss of any transmission line to natural disasters. The sec-
ond method improves on the first method by optimizing the entire
grid for any transmission line failure using a GA. The optimization
resulted in a lower number of DG that can be strategically distrib-
uted across the electric power grid predisaster to mitigate against
the failure of any transmission line. Further analysis of the results
shows that, although there are many feasible allocations of DG that
can mitigate against the failure of transmission lines, the shifts in
demand and electricity rates should be taken into consideration. If
left unchecked, the locational prices at some locations on the grid
may reach unreasonably high electrical power prices, which is a
known problem that may occur due to electric power congestion
when the electric grid is disrupted.

Conclusion

Every year, natural disasters, such as storms, hurricanes, or earth-
quakes, cause significant damage to the electrical power infrastruc-
ture and result in significant losses and necessary repair costs. DG
are small-scale decentralized power resources that can improve the
reliability of the electric power grid against such disasters. Accord-
ingly, the goal of this paper was to investigate reducing the vulner-
ability of the electric power infrastructure against natural disasters
by leveraging DG. This was achieved by developing an ABM
model as a complex SoS simulation of the electrical power infra-
structure and market to enable reliability analysis and planning.
DG optimization was performed using two different approaches:
(1) single-node optimization, and (2) entire network optimization
using GA. The model was further tested on a modified IEEE 6-bus
system using realistic parameters of supply, demand, and cost of
PV systems. The results show that GA combined with ABM is an
effective approach to test strategic allocations of DG that mitigate
the effect of natural disasters. Further analysis of the results shows
that LMPs should be taken into consideration to further mitigate
unreasonable electricity rates, which is a problem that can occur
in wholesale power markets impacted by natural disasters. Ulti-
mately, this research intends to benefit future researchers in capi-
talizing on using ABM and heuristic optimization to develop and
optimize complex SoS of electric power infrastructure and markets
and reduce their vulnerability against natural disasters. Although

the parameters in the proof of concept are representative of average
supply and demand in the US, the parameters and layout of simu-
lated networks can be easily modified. The developed framework
integrates ABM, OPF, and GA in a multilayer DG optimization
approach that fulfills the need for simulating and optimizing dy-
namic electrical networks as opposed to a conventional static grid
model. The limitations of this research, which are also suggested
for future work, are (1) to account for the cost of installing DG
systems at different locations on the grid, which can lead to the
development of a multiobjective optimization problem that inves-
tigates the trade-off between vulnerability and the cost of expan-
sion; (2) design a multiobjective optimization that also considers
the LMPs; (3) extend the current model to also include distribution
networks considering rooftop PV systems; (4) test and compare
other optimization algorithms in addition to GA such as simulated
annealing, particle swarm optimization, and others; (5) perform a
probabilistic analysis considering a daily variation in demand for
each LSE; and (6) verify the model using a large-scale case study
with a realistic natural hazard scale of impact, geographic system
footprint, and market conditions. Overall, the framework and meth-
ods presented in this research are intended to support the under-
standing of the benefits of DG in reducing the vulnerability of the
electric power grid against natural disasters, which can be achieved
pre-or-post-disaster. The vulnerability of the grid may be improved
by adjusting market regulations and policy incentives such as tax
incentives to strategically promote the adoption of DG such as PV
systems at targeted locations on the electric grid. DG can also be
strategically allocated for emergency post-disaster relief.
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