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Bayesian High-Rank Hankel Matrix Completion for
Nonlinear Synchrophasor Data Recovery
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and Dongbo Zhao, Senior Member, IEEE

Abstract—Phasor measurement units (PMUs) provide high
temporal-resolution synchrophasor measurements for power sys-
tem monitoring and control. The frequent data quality issues,
such as missing and bad data, prevent the incorporation of syn-
chrophasor data in real-time operations. Most existing data-driven
data recovery methods assume the power system dynamics can
be approximated by a linear dynamical system, and the recovery
performance degrades significantly when the power system is expe-
riencing nonlinear dynamics during significant events. This paper
proposes a data-driven Bayesian nonlinear synchrophasor data
recovery method (Ba-NSDR) that can recover a consecutive time
period of simultaneous data losses or errors across all channels,
even when the underlying system is highly nonlinear. The idea is
to lift the Hankel matrix of the spatial-temporal synchrophasor
data to a higher dimension such that the lifted Hankel matrix
is low-rank in that space and can be processed with the kernel
trick. Our proposed Bayesian method then infers the probabilistic
distributions of synchrophasor from the partial observations. Some
distinctive features of Ba-NSDR include an uncertainty index to
measure the accuracy of the recovery result and the robustness to
parameter selections. Our method is verified on both synthetic and
recorded event datasets.

Index Terms—PMU data recovery, high-rank matrix
completion, Bayesian robust matrix completion, kernel method,
uncertainty modeling.

I. INTRODUCTION

PHASOR Measurement Units (PMUs) provide synchro-
nized voltage and current phasor measurements across

different locations in the electric power system. With a high
sampling rate of thirty or sixty samples per second per channel,
synchrophasor data provide great visibility of power system dy-
namics, which is typically difficult to observe in the supervisory
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control and data acquisition (SCADA) system. Synchrophasor
data have been employed for event classification [1], [2], state
estimation [3], [4], [5] and system identification [6], [7]. Syn-
chrophasor data, however, suffer from quality issues such as
missing and bad data, because of various reasons like PMU
malfunctions, communication failure, and false data injections.
Synchrophasor data usually have missing and bad data issues.
The quality issues prevent synchrophasor data from being em-
ployed in real-time control operations.

Various approaches have been developed to handle missing
and bad data. The model-based methods utilize a dynamic
model [8] to fill the missing data or estimate the dynamic states
based on the Kalman filter [9], [10]. The performance critically
depends on accurate model estimation. Refs. [11], [12], [13]
train deep neural networks to recover missing data. Refs. [14],
[15], [16], [17] formulate the error correction as a hypothesis
testing problem. Ref. [18] exploits spatial-temporal similarities
in the synchrophasor measurements to correct bad data. Ref. [19]
employs the independent component analysis to obtain the mea-
surement structure and remove the errors. Refs. [20], [21], [22],
[23] exploit the low-rank property of the spatial-temporal PMU
data matrix to correct missing and bad data. These data-driven
methods, however, cannot handle simultaneous and consecutive
data issues across all channels.

When the power system dynamics can be approximated by
a linear dynamical system, [24], [25], [26], [27] exploit the
resulting low-rank property of the Hankel matrix of PMU data
to recover simultaneous and consecutive data issues. The linear
dynamical model, however, becomes inaccurate when the power
system is experiencing nonlinear dynamics. To the best of our
knowledge, only Ref. [28] considers missing data recovery in
nonlinear dynamical systems and proposes a lifted low-rank
Hankel property to characterize the data dynamics without ex-
plicitly modeling the dynamical system. This approach cannot
handle bad data, and its performance is very sensitive to pa-
rameter selection. Moreover, the recovery performance drops
significantly for long consecutive data loss. One major limitation
of most methods mentioned above is that they only provide an
estimation of the actual data without any evaluation of the accu-
racy of the estimation. Only Ref. [27] provides an uncertainty
evaluation of the recovered data.

This paper proposes a Bayesian high-rank Hankel matrix
recovery method (Ba-NSDR) to recover missing data and correct
bad data when the power system exhibits significant nonlin-
ear dynamics. The main idea is to lift the original high-rank
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Hankel matrix into a higher-dimensional space so that the lifted
matrix becomes low-rank. The nonlinear lifting function can
be characterized implicitly by the kernel function [29], which
has been exploited in high-rank matrix completion [30], [31],
[32]. [33] employs the kernel function to incorporate the prior
knowledge into the matrix completion, but it does not con-
sider the nonlinear dynamics. [34] uses the Gaussian process
with kernel functions to model the linear time-invariant (LTI)
systems and approximate the nonlinear dynamical systems by
LTI systems. [34] is not modeless and requires detailed system
information. A prior probabilistic distribution is imposed over
the Hankel matrix, and Ba-NSDR computes the approximate
posterior distributions using variational inference based on the
observed data. Ba-NSDR has multiple distinctive features. First,
it can handle simultaneous and consecutive missing/bad data
across all PMU channels. When the system is experiencing non-
linear dynamics, the recovery accuracy by Ba-NSDR is much
higher than the existing methods. Second, Ba-NSDR returns an
uncertainty index that reflects the accuracy of recovered data,
while the recovery accuracy of most existing methods cannot be
measured without the ground-truth value. Third, Ba-NSDR does
not require any prior knowledge of the unknown ground-truth
matrix rank and is robust to the initial rank selection. It can
effectively estimate the rank from the observed data through
pruning from a large rank.

The rest of the paper is organized as follows. The problem for-
mulation, low-rank Hankel property, and low-rank lifted Hankel
property of synchrophasor data are described in Section II. The
methodology is introduced in Section III. Section IV reports the
numerical results. Section V concludes the paper. The derivation
details of our method are shown in the supplementary materials.

II. PROBLEM FORMULATION

Let a matrixY denote the ground truth of PMU measurements
of m channels at different locations during n time instants,

Y = [y1,y2, . . .,yn] ∈ Rm×n, (1)

where yi ∈ Rm denotes the measurement of m channels at time
instant i. Let N ∈ Rm×n denote the measurement noise. Let
E ∈ Rm×n denote the additive bad data. The entries in E can
be arbitrarily large, modeling significant bad data. We assume
such bad data only happen at a small fraction of measurements,
i.e., E is sparse.

Let a matrixY o ∈ Rm×n denote the observed measurements.
Each entry Y o

i,j in the set Ω of observed entries is given by

Y o
i,j = Yi,j + Ei,j +Ni,j (i, j) ∈ Ω, (2)

where Ω denotes the set of observed entries. The unobserved
entries inY o are irrelevant and set as zeroes for the completeness
of the definition.

The objective of this paper is to recover data Y with mea-
surable accuracy from measurements Y o that are corrupted by
missing data, bad data, and noise. This is particularly challenging
when the power system is under nonlinear dynamics.

Our proposed Ba-NSDR method exploits the low-rank prop-
erty of the lifted Hankel matrix of the PMU data in nonlinear

dynamical systems. We first introduce the low-rank Hankel
property for linear dynamical systems in Section II-A and then
generalize to the lifted Hankel matrix for nonlinear dynamical
systems in Section II-B. Detailed analyses of low-rank Hankel
property can be found in Refs. [24] and [28], respectively.

A. Low-Rank Hankel Property of PMU Data

LetHn2
(Y ) ∈ Rmn2×n1 (n1 + n2 = n+ 1) denote the Han-

kel matrix of Y , where the jth column of Hn2
(Y ) includes all

the measurements in m channels from time j to j + n2 − 1, i.e.,

Hn2
(Y ) =

⎡
⎢⎢⎢⎣

y1 y2 . . . yn1

y2 y3 . . . yn1+1

...
... . . .

...
yn2

yn2+1 . . . yn

⎤
⎥⎥⎥⎦ ∈ Rmn2×n1 . (3)

As shown in [24], if the underlying system that produces output
y1 to yn can be approximated by an order-r (integer r ≥ 1)
linear dynamical system, then Hn2

(Y ) can be approximated
by a rank-r matrix. Hn2

(Y ) is low-rank because r can be much
smaller thanm andn1. The rank-r approximationQr(Hn2

(Y ))
to Hn2

(Y ) can be computed by

Qr(Hn2
(Y )) = A1S

r
1B1

T , (4)

where Hn2
(Y ) = A1S1B1

T is the singular value decompo-
sition of Hn2

(Y ). A1, B1, and S1 represent the left singular
vectors, right singular vectors, and singular values, respectively.
Sr

1 keeps the largest r singular values inS1 and sets all the others
to zero. The corresponding normalized approximation error is
computed by

||Qr(Hn2
(Y ))−Hn2

(Y )||F
||Hn2

(Y )||F =
||Sr

1 − S1||F
||S1||F . (5)

where ||.||F represents the Frobenious norm.

B. Low-Rank Lifted Hankel Property in Nonlinear Dynamical
System

When the underlying system is highly nonlinear such as
immediately after a significant event, approximating a nonlinear
system using a linear dynamical model usually requires a large
order r. Thus, the correspondingHn2

(Y ) is no longer low-rank.
The idea is to lift the measurements yi to a higher dimensional
space using a mapping function φ(·) : Rm → RM , where M is
much larger than m and can be infinite. As described in [28],
there exists a mapping φ(·) such that the nonlinear dynamical
system can be a linear dynamical system in the lifted space. Let
Hn2

(Z) be

Hn2
(Z) =

⎡
⎢⎢⎢⎣

z1 z2 . . . zn1

z2 z3 . . . zn1+1

...
... . . .

...
zn2

zn2+1 . . . zn

⎤
⎥⎥⎥⎦ ∈ RMn2×n1 , (6)

where zi = φ(yi). The rank ofHn2
(Z) can be smaller than that

of Hn2
(Y ) for a proper φ.

The rank-r approximation of Hn2
(Z) can be written as

Qr(Hn2
(Z)) = A2S

r
2B2

T , (7)
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where Sr
2 contains the largest r singular values of Hn2

(Z), A2

and B2 contain left and right singular vectors, respectively. The
normalized approximation error ofQr(Hn2

(Z)) toHn2
(Z) can

be computed by

||Qr(Hn2
(Z))−Hn2

(Z)||F
||Hn2

(Z)||F =

√∑n1

i=r+1 σ
2
i∑n1

i=1 σ
2
i

, (8)

where σi denotes the ith largest singular value of S2. σi cannot
be computed directly from the SVD ofHn2

(Z)becauseHn2
(Z)

is unknown. Instead, one can compute Hn2
(Z)THn2

(Z) ex-
plicitly using the kernel trick [28] without knowing φ(·). The
(i, j)th entry in Hn2

(Z)THn2
(Z) is computed by

(Hn2
(Z)THn2

(Z)
)
i,j

=
[
zi . . . zi+n2−1

] ⎡⎢⎣
zj

...
zj+n2−1

⎤
⎥⎦
(9)

=

p=n2−1∑
p=0

φ(yi)
Tφ(yj) =

p=n2−1∑
p=0

KY Y (i+ p, j + p),

(10)

where KY Y is the kernel function. The most popular kernel
functions are the Gaussian kernel and the polynomial kernel.
Reference [32] reports that the matrix completion methods with
the Gaussian kernel perform better than the polynomial kernel.
The Gaussian kernel corresponds to an infinite dimensional φ.
We employ the Gaussian kernel as follows,

KY Y (i, j) = φ (yi)
T φ(yj) = exp

(
− 1

2c
||yi − yj ||22

)
,

(11)
where c is a pre-defined scalar. One then solves the eigen-
decomposition of Hn2

(Z)THn2
(Z). The eigenvalues of

Hn2
(Z)THn2

(Z) are σ2
i , i.e.,

Hn2
(Z)THn2

(Z) = B2S
2
2B

T
2 . (12)

Remark: When Y is obtained from a nonlinear dynamical
system, to achieve the same normalized low-rank approxima-
tion error, it often requires a smaller rank to approximate the
lifted Hankel matrix Hn2

(Z) (with a properly selected kernel
function) than to approximateHn2

(Y )with the samen2. There-
fore, the low-rank lifted Hankel property is more desirable in
recovering PMU data in nonlinear dynamics.

To illustrate the low-rank lifted Hankel property, we consider
a recorded generator trip event in New York State [24]. Fig. 1
shows the 10 seconds of voltage magnitude measurements in
11 channels at different locations. The data rate is 30 samples
per second per channel. Let Y ∈ R11×300 contain all the mea-
surements. Fig. 2(a) shows the normalized approximation errors
of rank-r matrices to Hn2

(Z) and Hn2
(Y ). c = 200 in (11).

For example, the normalized error of rank-5 approximation to
H10(Z) is 0.0015. In comparison, the matrix rank needs to be
as least 10 to achieve a similar approximation error to H10(Y ).
Moreover, with a largen2, the dimension ofHn2

(Z) is very large
but could be approximated by a matrix with a small rank. For

Fig. 1. The measurements of voltage magnitude [24].

Fig. 2. (a) The normalized approximation errors of the original Hankel matri-
ces Hn2 (Y ) and the corresponding lifted Hankel matrices Hn2 (Z). (b) The
normalized approximation errors of column-wise permuted Hankel matrices
Hn2 (Ȳ ) and the corresponding lifted Hankel matrices Hn2 (Z̄).

instance, H20(Y ) is in R220×281, and H20(Z) is even higher-
dimensional due to the lifting. Still, H20(Z) can be approxi-
mated by a rank-15 matrix with a normalized error of 0.00083.

To illustrate that the low-rank (lifted) Hankel property is
special for data from dynamical systems rather than an arbitrary
matrix, we permute the columns in Y randomly and let Ȳ
be the resulting matrix. Then Y and Ȳ have the same rank,
but each row of Ȳ is no longer a time series. Fig. 2(b) shows
the normalized approximation errors of Hn2

(Ȳ ) and Hn2
(Z̄),

which are Hankel and lifted Hankel matrices constructed from
Ȳ . In contrast to Fig. 2(a), the approximation errors in Fig. 2(b)
remain significant even when the rank is very large, because the
low-rank (lifted) Hankel property does not hold for Ȳ , which is
not obtained from a dynamical system.

III. BAYESIAN HIGH-RANK HANKEL MATRIX RECOVERY

(BA-NSDR) METHOD

The main idea of our proposed Ba-NSDR method is to esti-
mate a matrixY from partial observationsY o such that the lifted
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Fig. 3. An overall framework of the proposed method. The method maps the estimated data Y into a Hankel matrix X and then lifts X into higher dimensional
space Φ(X). Φ(X) is decomposed with a lifted factor Φ(U), and the coefficient matrix V .

Hankel matrix of Y is low-rank. To simplify representation,
given n2, we use X and Φ(X) to denote Hn2

(Y ) and Hn2
(Z),

respectively. With a bit of abuse of notation, Φ(A) means divid-
ing each column of the matrixA into multiple vectors in Rm and
lifting each vector to RM by the lifting function φ. Assuming
Φ(X) is rank K, we view Φ(X) as the product of two matrix
factors, Φ(U) in RMn2×K and V in RK×n1 , where Φ(U) is a
lifted matrix to RMn2×K from a matrix U in Rmn2×K . Because
the rank K is small, the degree of freedom K(mn2 + n1) is
much less than mn, the ambient dimension of Y . Therefore,
we could accurately recover U , V , and thus Y from partial
observations that contain bad data. Note that every column of
Φ(X) includes all data from m channels in n2 consecutive
steps. Then as long as there exist K reliable measurements in
all channels in a length-n2 window, all the remaining measure-
ments in that window can be accurately recovered. Thus, by
exploiting the low-rank lifted Hankel property, one can recover
data losses/errors in all m channels consecutively.

As a Bayesian approach, Ba-NSDR first imposes a prior
distribution on Y and Φ(X) (Section III-A) and then computes
the posterior distribution based on partial observations Y o (Sec-
tion III-B). Ba-NSDR then uses the posterior distribution ofY to
estimate the data and compute the uncertainty index that reflects
the estimation accuracy (Section III-C). Section III-D discusses
the parameter selection.

A. Proposed Probabilistic Model

Equations (13) to (20) show our hierarchical probabilistic
model of the prior distributions (Fig. 3 shows the visualiza-
tion). Readers can refer to [35] for prerequisites of the pro-
posed Bayesian model. The latent variables are inferred using
observations based on this probabilistic model. Equation (13)
is a probabilistic version of equation (2), where Yi,j can be
written as the Hankel inverse (H†X)i,j , where the Hankel
inverse operator H† is defined in (35) in the supplementary
materials. Φ(X).q ∈ RMn2 is the qth column of Φ(X). The

Fig. 4. The Graphical model of the proposed Bayesian high-rank Hankel
matrix completion method.

prior knowledge of rankK might be unavailable. Ba-NSDR sets
the initial K as a relatively large number and gradually prunes
the basis based on learned coefficients V .

The prior distributions of U .k, X .q , and V .q are
drawn from multivariate Gaussian distributions N (0, γ−1

u IK),
N (0, γ−1

x IK), andN (0, γ−1
v IK), respectively. Imn2

is anmn2

by mn2 identity matrix. γu, γx, and γv are three pre-defined
scalars. Each element in the error matrix E is drawn from a
Gaussian distribution N (0, β−1

i,j ). Each element in the noise
matrixN is drawn from a Gaussian distributionN (0, γ−1

y ). The
Gamma prior distribution is placed on γy and βi,j , following
parameters (e0, f0) and (g0, h0), respectively. The mathematical
definition of the Gamma distribution is shown in the supplemen-
tary material. The conjugate priors are placed on V .q , γy , Ei,j ,
and βi,j to derive analytical solutions of posterior distributions.
The graphical representation of the proposed probabilistic model
is shown in Fig. 4.

For all q = 1, 2, 3, . . ., n1, and k = 1, 2, 3, . . .,K,

Y o
i,j ∼ N

((H†X
)
i,j

+ Ei,j ,
1

γy

)
(i, j) ∈ Ω (13)
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Φ(X).q ∼ N
(
Φ(U)V .q,

1

γε
Imn2

)
(14)

U .k ∼ N
(
0,

1

γu
Imn2

)
(15)

X .q ∼ N
(
0,

1

γx
Imn2

)
(16)

V .q ∼ N
(
0,

1

γv
IK

)
(17)

γy ∼ Γ(e0, f0) (18)

Ei,j ∼ N
(
0,

1

βi,j

)
(i, j) ∈ Ω (19)

βi,j ∼ Γ(g0, h0) (20)

B. Variational Inference for Approximating the Posterior
Distributions

To simplify representation, we denote Θ = {U .k,V .q,
X .q, γy, Ei,j , βi,j , q = 1, 2, 3, . . ., n1, k = 1, 2, 3, . . .,K, (i, j)
∈ Ω} as the set of all the latent variables. Let Θi denote one
arbitrary variable in Θ. Given partial observation Y o

Ω, the goal
is to compute the posterior distribution p(Θ,Y |Y o

Ω). Based on
Bayes’ theorem,

p(Θ,Y |Y o
Ω) =

p(Θ,Y ,Y o
Ω)

p(Y o
Ω)

. (21)

Computing (21) requires marginalizing out all the latent vari-
ables, which is usually intractable.

As a popular approach to approximate the complicated pos-
terior distribution, the mean field variational inference [35] em-
ploys a simple distribution q(Θ) to approximate p(Θ,Y |Y o

Ω).
The mean field assumption assumes that each element in Θ
is mutually independent. Then q(Θ) can be factorized as the
product of each element, i.e.,

q(Θ) =

K∏
k=1

q(U .k)

n1∏
q=1

q(V .q)q(X .q)

×
∏

(i,j)∈Ω
q(Ei,j)q(βi,j)q(γy). (22)

The best q(Θ) to approximate p(Θ,Y Ω|Y o
Ω) is found by mini-

mizing the Kullback–Leibler (KL) divergence, which measures
the similarity of two probabilistic distributions. Specifically,

q(Θ) = argmin
q(Θ)

KL(q(Θ)||p(Θ,Y |Y o
Ω))

= argmax
q(Θ)

E[ln p(Θ,Y ,Y o
Ω)]− E[ln q(Θ)]. (23)

where KL(x||y) denotes the KL divergence of distribution x
and y, and E is the expectation over q(Θ). The second equality
follows from the definition of KL divergence and removes the
term unrelated to q(Θ).

Because it is intractable to solve (23), a typical approach is to
optimize each variable Θi in Θ via solving (23) while keeping

all other variables fixed using the most recent distributions.

q(Θi)

= arg max
q(Θi)

(∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω)]d(Θi)

−
∫

q(Θi)ln q(Θi)dΘi

)
(24)

where Eq(Θ\Θi) represents that the expectation is taken with
respect to all the latent variables excluding Θi. These approxi-
mate distributions of variational inference finally converge to a
local optimum of (23) [35], [36].

Because the conjugate priors are placed on latent variables
V .q , Ei,j , βi,j and γy , (24) has analytical solutions for these
variables. Please refer to steps (I), (IV), (V), and (VI) in sup-
plementary materials for the respective updating equations. Be-
cause U .k and X .q are lifted to a higher dimensional space via
the kernel method, (24) does not have analytical forms for these
variables. To solve (24), we assumeU .k andX .q are drawn from
Gaussian distributions, and then the problem is simplified to find
the corresponding mean and the variance of each variable. Then
the reparameterization trick [37] is employed to differentiate
and optimize the objective in (24) with respect to the mean
and variance, respectively. Please refer to steps (II) and (III)
in supplementary materials for the updating equations of U .k

and X .q.
Computing the objective function in (24) for V .q, U .k and

X .q requires computing the inner product of the lifting function.
We employ three Gaussian kernels KXX , KXU and KUU in
(25)–(27) when updating V .q , X .q , and U .k, respectively.

KXX(p, q) = Φ(X)T.pΦ(X).q=exp

(
− 1

2c1
||X .p −X .q||22

)
,

(25)

KXU (q, k) = Φ(X)T.qΦ(U).k=exp

(
− 1

2c2
||X .q −U .k||22

)
,

(26)

KUU (i, j) = Φ(U)T.iΦ(U).j = exp

(
− 1

2c3
||U .i −U .j ||22

)
,

(27)

where c1, c2 and c3 are pre-defined scalars.
Initialization: Each entry in U is initialized from a Gaussian

distribution N (0, 1). V is initialized as an all-zero matrix. All
the elements in initial variances for U .k and X .q are set as
exp(−2). The initialization X̄

0 of X is initialized as the rank-r
approximation to Hn2

(Y o), where the missing entries are set
as zero. The initial E is set as Y o − PΩ(H†X̄0

). The γy is
initialized as 106.

Estimating the Rank of the Lifted Hankel Matrix: Because
the actual rank of Φ(X) is unknown, one selects K that is
guaranteed to be larger than the actual rank. The deterministic
methods such as [32] require K to be an accurate estimation of
the rank and often overfit when K is larger than the actual rank.
Here we propose to estimate the rank and remove the redundant
factor by thresholding the entries in E[V ]. If the sum of absolute
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values of E[Vkq] for all q is less than a threshold (e.g., 10−2),
the algorithm removes the kth column in E[U ], the kth row
in E[V ], and reduces the rank K by one. That is because the
kth column in E[U ] is not selected to represent Φ(X) and is
no longer needed. Therefore, our method is robust to the initial
rank and can effectively infer the actual rank.

Estimating the Sparsity of the Error MatrixE: Reference [38]
shows that the Gaussian distribution with Gamma priors pro-
motes the sparsity of E. We can make E[E] sparser through
thresholding, because significant errors do not happen fre-
quently. When entries in E[E] are very small (e.g., 10−1), the
corresponding entries are set as zeroes.

Convergence Criteria: Let X̄t and X̄
t−1 denote the estima-

tion of X at the tth and t− 1th iteration, respectively. The algo-

rithm terminates if ‖X̄t−X̄
t−1‖F

‖X̄t−1‖F
< ξ where ξ is a pre-determined

threshold, or if the maximum iterations Tmax is reached.
Missing Data Recovery Only: The algorithm can be simplified

when the objective is to recover missing data only, assuming the
observations do not contain bad data. Equations (19) and (20)
in the prior model characterize the bad data distribution and
can be removed. One can also skip steps (IV) and (V) (in the
supplementary materials) that update Ei,j and βi,j .

Computational Complexity: The computational complexity
per iteration is O(Lmn2n1Ktmax), where L and tmax are the
Monte-Carlo samples and maximum iterations of inner loops,
respectively, when computing U and X . Thus, the compu-
tational complexity scales at most linearly in the size of the
Hankel matrix. The details of derivation are provided in Section
F in the supplementary materials. Our algorithm is a block
processing method and is most suitable for offline data recovery.
It could possibly be used for online processing with sufficient
computational power.

C. Data Recovery and Uncertainty Index

With the computed posterior distributions, we use the mean of
the distribution of Yi,j as an estimate of the corresponding entry
in Y for every i = 1, . . .,m, and j = 1, . . ., n. The variance of
Yi,j is employed to estimate the accuracy of data recovery. Be-
cause the mean and variance do not have closed-form solutions,
the Monte Carlo integration [39] is employed to compute them
approximately. The predictive mean is derived as follows:

E[Yi,j ] ≈ 1

J

J∑
l=1

(H†X(l))i,j X(l) ∼ q(X|Y o
Ω), (28)

where J is the number of Monte-Carlo samples. Each X(l)

is sampled from learned posterior distributions. The predictive
variance is computed by:

Var[Yi,j ] = E[Y 2
i,j ]− E[Yi,j ]

2

≈ 1

J

J∑
l=1

1

γ
(l)
y

+
1

J

J∑
l=1

(H†X(l))2i,j−
(
1

J

J∑
l=1

(
H†X(l)

)
i,j

)2

,

(29)

where each γ
(l)
y is sampled from learned posterior distribution

q(γy|Y o
Ω). We use the average variance as an uncertainty index

of the data estimation, i.e.,

Uindex =

⎛
⎝ m∑

i=1

n∑
j=1

Var[Yi,j ]

⎞
⎠ /(mn). (30)

A higher average variance leads to a larger uncertainty index.
That means the algorithm is less confident about the recovery
results.

D. Parameter Selection

The prior distributions (18) and (20) require setting param-
eters (e0, f0) and (g0, h0). When e0 is fixed, a larger f0 cor-
responds to a smaller γy , which in turn increases the variance
1/γy of the noise N . When h0 is fixed, a larger g0 corresponds
to a larger βi,j , which in turn decreases the value of Ei,j . Note
that (e0, f0) and (g0, h0) have a minor impact on the recovery
results. Another important parameter is the Hankel sizen2. With
a larger n2, the method can recover consecutive data losses
and errors for all channels for a longer time window (close
to n2 time steps). On the other hand, increasing n2 leads to
a higher computational cost. In our experiments, setting n2 as at
most 80 is sufficient to obtain accurate recovery performance. In
Section IV-C3, we show that Ba-NSDR is not sensitive to these
parameter selections.

IV. NUMERICAL EXPERIMENTS

A. Experimental Setup

We compare our proposed Ba-NSDR approach with the
following nine methods: the Bayesian robust Hankel matrix
completion method (BRHMC) in [27], the Bayesian robust
Hankel matrix completion method employing the sliding win-
dow (BRHMC-S), the Bayesian Hankel matrix completion
method (BHMC) in [27], the Bayesian Hankel matrix com-
pletion method employing the sliding window (BHMC-S), the
deterministic kernel-based matrix completion method (KMC)
in [32], the deterministic Hankel matrix completion method
(AM-FIHT) in [25], the deterministic robust Hankel matrix
completion method (SAP) in [26], the deterministic streaming
data recovery method (SDR) in [24], the deterministic stream-
ing data recovery method considering the nonlinear dynamics
(SDR-K) in [28], The streaming methods “SDR” and “SDR-K”
require that the observations in the first time window contain
no missing and bad data, which is one disadvantage compared
with offline methods. In the following experiments, we do not
include missing and bad data in the first time window of these
two methods to make a fair comparison.

Some parameters of Ba-NSDR are set as follows for all
experiments if not otherwise stated: γε = 105, γv = 102, J =
50, L = 1, γx = γu = 1, e0 = 10−6, f0 = 10−4, g0 = 1, h0 =
10−6, ξ = 10−4. λ1 = 10, λ2 = λ4 = 0.1, λ3 = 1.Tmax = 100.
tmax
1 = tmax

2 = tmax
3 = tmax

4 = 100. The experiments are con-
ducted on Matlab 2019 with a desktop with 3.1 GHz Intel
i9-9900 and 32 GB memory. Fig. 5 shows three modes of
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Fig. 5. Three modes of missing/bad data generation. “M” stands for missing
data. “B” stands for bad data.

missing/bad data considered in this experiment. For example,
M3 represents Mode 3 of missing data. B2 represents Mode 2
of bad data.
� Mode 1: Missing/bad entries independently and randomly

distribute across all channels and time instants.
� Mode 2: Missing/bad entries distribute across all channels,

and the time instants are randomly selected.
� Mode 3: Missing/bad entries distribute across all channels.

The time instants are consecutive instants and the starting
instant is randomly selected.

Evaluation Metrics: The Normalized Estimation Error (NEE)
is employed to evaluate the data recovery performance. The NEE
is defined as

NEE = ‖Ŷ − Y ‖F /‖Y ‖F , (31)

where Ŷ in Rm×n is the estimate and Y in Rm×n is the ground-
truth data. Note that the computation of NEE requires ground-
truth data and can only be used for evaluation. When there is
no ground-truth data provided, the uncertainty index reflects the
estimation accuracy. We will report both the uncertainty index
and NEE in the following experiments.

B. Performance on Synthetic Datasets

1) Dataset Generation: We first evaluated the data recov-
ery performance on synthetic data where each row of Y is a
weighted sum of r time-varying damping noisy sinusoids. Each
entry Yi,j in Y is generated by

Yi,j=

r∑
k=1

bk,je
−aitj sin(2πfk,jtj) i = 1, . . .,m, j = 1, . . ., n,

(32)
where fk,j is the time-varying frequency, bk,j is the time-varying
amplitude of the kth sinusoid. The general form of time-varying
frequency and amplitude can characterize the dynamic transi-
tions during a significant disturbance in power systems. The
frequency fk,j is randomly selected from (100,102). The am-
plitude bj,k is randomly selected from (1,1.3). r = 2, a1 =
30, a2 = 40, a3 = 35. The generated matrix Y has three rows

TABLE I
THE RECOVERY ERROR AND THE UNCERTAINTY INDEX BY BA-NSDR ON M2

MISSING DATA OF SYNTHETIC DATA

and 300 columns. Fig. 7 shows the normalized approximation
errors of rank-r matrices to the Hankel matrix Hn2

(Y ) and the
lifted Hankel matrix Hn2

(Z). c = 200 in (11). One can see that
it requires a much smaller rank to approximate Hn2

(Z) than
Hn2

(Y ) with the same normalized approximation error. For
example, a rank-2 approximation to H10(Z) is 0.019, while it
requires at least rank-27 to achieve a similar error to approximate
H10(Y ).

We used a simple signal with nonlinear dynamics in (32) to
verify the performance of our algorithm. The signals in (32)
simulate the nonlinear dynamics from a nonlinear dynamical
system. As stated in reference [40], a linear dynamical system
should hold homogeneity property and additive property at
the same time. Therefore, if an input is a sinusoidal signal
x(t) = sin(2πft), where f is the frequency and t is the time
instant, the output of a linear dynamical system should be
y(t) = Asin(2πft+ α), whereA is a scaling amplitude andA is
a scalar, and α is the time-shifting phase. Because the amplitude
in (32) is time-varying, the resulting signals are not generated
from a linear dynamical system but from a nonlinear system.

2) Recovery Performance: Some parameters of Ba-NSDR
are: c2 = c3 = 200, ξ = 10−4, K = 50, Tmax = 150. n2 =
20 for all cases except that n2 = 30 for M3 missing mode
(Fig. 6(c)–(f)). The results are averaged over 10 trails. Fig. 6(a)–
(c) compare the missing data recovery performance of Ba-NSDR
with KMC, SDR-K, AM-FIHT, BHMC-S, and BHMC on three
missing data modes. Ba-NSDR achieves the lowest recovery er-
ror among all the methods. Specifically, the conventional kernel-
based method KMC does not consider the Hankel structure and,
thus, performs poorly on M2 and M3 modes. Deterministic
Hankel-based method AM-FIHT and Bayesian Hankel-based
methods BHMC, BHMC-S, approximate the data generated
from nonlinear dynamical systems using linear dynamical sys-
tems and, thus, cannot accurately recover the highly nonlinear
components. SDR-K employs the low-rank lifted Hankel prop-
erty to characterize nonlinear dynamics and performs better
than all other methods except our method Ba-NSDR. SDR-K
does not provide any uncertainty index and cannot handle bad
data. Moreover, SDR-K is sensitive to parameter selections,
especially the selection of rank. Table I shows the NEE and the
corresponding uncertainty indices when the missing data follow
M2 mode. The uncertain index increases when the recovery error
increases. This indicates that the uncertainty index is able to
differentiate reliable estimations from unreliable estimations.

Fig. 6(d)–(f) compare the data recovery performance of Ba-
NSDR with SAP, BRHMC-S and BRHMC when data contain
both missing and bad data. Except for Ba-NSDR, all other
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Fig. 6. Comparison of Ba-NSDR with other methods. (a)–(c) show the missing data recovery results with three missing modes. (d)–(f) show the recovery results
with both missing and bad data.

Fig. 7. Low-rank approximations to Hankel matrices Hn2 (Y ) and the corre-
sponding lifted Hankel matrices Hn2 (Z) for synthetic data.

methods do not characterize nonlinear dynamics. One can see
from Fig. 6(d)–(f) that Ba-NSDR performs the best among all the
methods. Note that the signal in (32) does not include the phase
for simplicity. We also tested the performance of our algorithm
on a sinusoid with a time-varying phase, and the recovery results
are shown in Fig. 11 in supplementary materials. Our method
achieves similar performance as the results in Fig. 6.

C. Performance on Practical PMU Dataset

We then conducted the experiments on the recorded dataset as
shown in Fig. 1 in Central New York Power System.1 The PMU
data type is voltage in rectangular coordinates. The proposed
method can also be easily extended to other data types such as
current and frequency. Observations in all channels are available
in this 10-second window and are treated as ground-truth data.
We remove some data points and add bad data following different

1We provide an additional case study on the recorded PMU data of a trans-
former failure event in Central New York in the supplementary materials.

TABLE II
THE RECOVERY PERFORMANCE OF RECORDED PMU DATA ON 6.7% M3 MODE

TABLE III
THE RECOVERY PERFORMANCE OF RECORDED PMU DATA ON 5% M1 AND

3.7% B3 MODE

patterns. The recovered data are evaluated by comparing them
with the ground-truth data.

1) Recovery Performance: We first evaluated our method on
two case studies.
� Case 1: 6.7% data are removed following Mode M3. The

length of M3 missing data is 20 consecutive time instants,
which correspond to 0.67 seconds.

� Case 2: 5% data are removed following Mode M1 and 3.7%
bad data following Mode B3 are added. The length of B3
bad data is 10 consecutive time instants, which correspond
to 0.33 seconds. The bad data is randomly sampled from
(0.1, 0.4).

The parameter setting of Ba-NSDR is as follows. The initial
rank is set as 10. n2 = 30, c2 = c3 = 40, f0 = 10−6 in Case 1.
n2 = 80, n2 = 5, c2 = c3 = 7, f0 = 10−4 in Case 2.

Figs. 8 and 9 compare the recovery performance of Ba-NSDR
with other methods on Case 1 and Case 2, respectively. Ba-
NSDR can accurately recover the nonlinear dynamics during the
event and clearly outperform all the existing methods. Tables II
and III report the NEE over the whole ten-second window, the
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Fig. 8. The recovery performance on 6.7% M3 missing data. (a) the observed data, (b) the estimated data by the proposed Ba-NSDR method, (c) the estimated
data by the BHMC method, (d) the estimated data by the BHMC-S method, (e) the estimated data by the AM-FIHT method, (f) the estimated data by the SDR-K
method.

Fig. 9. The recovery performance on 5% M1 missing data and 3.7%B3 bad data. (a) the observed data, (b) the estimated data by the proposed Ba-NSDR method,
(c) the estimated data by the BRHMC method, (d) the estimated data by the BRHMC-S method, (e) the estimated data by the SAP method, (f) the estimated data
by the SDR method.

NEE of a window between 2-4 seconds where missing data
occur, denoted by NEE2−4, and the computational time of these
methods over the whole ten-second window. Ba-NSDR achieves
a great balance of recovery accuracy and computational cost.
AM-FIHT, SAP, SDR, and SDR-K are computationally efficient,
but their recovery performances are worse than our method.
BHMC-S and BRHMC-S truncate the data into small windows
and approximate each window using low-rank Hankel matrices
and thus are much more computationally expensive than other
methods.

The major disadvantage of our method is that it is more com-
putationally expensive than the deterministic low-rank Hankel
methods. However, we can see from Tables II and III that the

proposed Ba-NSDR method achieves a great balance of recov-
ery accuracy and computational cost. Moreover, the proposed
probabilistic framework is able to model the uncertainty of
the recovery results, while other works cannot provide such an
uncertainty index.

2) Uncertainty Modeling: One major advantage of Ba-
NSDR over existing PMU data recovery methods is that it
provides an uncertainty index, which can be employed to eval-
uate the reliability of the recovery results. Table IV shows the
recovery performance and the corresponding uncertainty index
on 5% B1 with varying missing data percentages of mode M2.
Table V shows the recovery performance and the corresponding
uncertainty index on 5% M2 with varying bad data percentages
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TABLE IV
THE RECOVERY ERROR AND THE UNCERTAINTY INDEX ON 5% B1 WITH

VARYING MISSING DATA PERCENTAGE OF M2

TABLE V
THE RECOVERY ERROR AND THE UNCERTAINTY INDEX ON 5% M2 WITH

VARYING BAD DATA PERCENTAGE OF B1

TABLE VI
THE IMPACT OF f0 (e0 IS FIXED AND e0 = 10−6)

TABLE VII
THE IMPACT OF g0 (h0 IS FIXED AND h0 = 10−3)

TABLE VIII
THE IMPACT OF THE INITIAL K

TABLE IX
THE IMPACT OF HANKEL PARAMETER n2

of B1. One can see that the recovery error and uncertainty index
increase when the missing/bad data percentage increases. In
Table IV, the recovery error is large when the missing data
percentage is 45%, and the corresponding uncertainty index
is significantly larger than the values at other missing data
percentages when the recovery errors are small. This verifies
the effectiveness of our proposed uncertainty index.

3) The Impact of Parameter Selections: We evaluated the
impact of parameter selections in recovering 5% M2 missing
and 5% B2 bad data. The bad data are randomly selected from
(0.3,0.5). As discussed in Section III-D, we fixed e0 and vary f0
to show the impact of (e0, f0). One can see from Table VI that
Ba-NSDR maintains a very small recovery error with a wide
range of f0. We also fixed h0 and varied g0 to show the impact
of (g0, h0). Table VII shows that Ba-NSDR is not sensitive to
the selection of g0.

Table VIII shows the recovery performance when the initial
rank varies. The recovery error NEE of Ba-NSDR remains very
small with different ranks. Moreover, the estimated final ranks
are consistent and much smaller than the initial rank, indicating
that Ba-NSDR prunes the rank effectively.

The Hankel parameter n2 is increased from 1 to 25 and the
results are shown in Table IX. When n2 = 1, the Hankel matrix
reduces to the original data matrix. One can see from Table IX
that increasingn2 indeed leads to more accurate recovery results.

TABLE X
THE IMPACT OF GAUSSIAN KERNEL PARAMETER c2 = c3

Table X shows the performance when the Gaussian kernel
parameters c2 and c3 increase. The numerical results indicate
that the proposed method is not sensitive to the Gaussian kernel
parameters c2 and c3.

V. CONCLUSION

This paper proposes a Bayesian high-rank Hankel matrix
recovery (Ba-NSDR) method to recover the synchrophasor mea-
surements with missing and bad data. The proposed method
maps the constructed Hankel matrix into a higher dimensional
space by employing the kernel method and exploits the lifted
low-rank Hankel property in recovering synchrophasor data
under significant nonlinear dynamics. Ba-NSDR clearly out-
performs the existing methods, especially when the data contain
long consecutive missing or bad data. The distinctive features
of Ba-NSDR include an uncertainty index that reflects the reli-
ability of recovery results and the robustness to the initial rank
selection. One future direction is to explore the effect of different
kernels so that the method can pick the best kernel automatically
for different scenarios.
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