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Abstract—In the power system, security assessment (SA) plays
a pivotal role in determining the safe operation in a normal
situation and some contingencies scenarios. Electrical variables
as input variables of the model are mainly considered to indicate
the power system operation as secure or insecure, according to
the reliability criteria for contingency scenarios. In this approach,
the features are in grid format data, where the relation between
features and any knowledge of network topology is absent.
Moreover, the traditional and common models, such as neural
networks (NN), are not applicable if the input variables are in
the graph format structure. Therefore, this paper examines the
security analysis in the graph neural network (GNN) framework
such that the GNN model incorporates the network connection
and node’s neighbors’ influence for the assessment. Here the
input features are separated graphs representing different net-
work conditions in electrical and structural statuses. Topological
characteristics defined by network centrality measures are added
in the feature vector representing the structural properties of
the network. The proposed model is simulated in the IEEE 118-
Bus system for the voltage static security assessment (SSA). The
performance indices validate the efficiency of the GNN-based
model compared to the traditional NN model denoting that the
information enclosed in graph data boosts the classifier perfor-
mance since the GNN model benefits the neighbors’ features.
Moreover, outperforming of GNN-based model is determined
when robustness and sensitivity analyzes are carried out. The
proposed method is not limited to a specific task and can be
extended for other security assessments with different critical
variables, such as dynamic analysis and frequency criteria,
respectively.

Index Terms—Security assessment, Reliability criteria, Net-
work centrality measure, Neural network, Graph neural network,
Static security assessment.

I. INTRODUCTION

SECURITY itself means being free from risk and threat. In
this context, power system can not be considered secure

since it always anticipates the occurrence of disruption. Also,
the possibility of an incident is increasing since the power
system is being utilized inverter-based resources (IBR) such
as wind turbines and solar panels [1]. So, security in the
power system measures the risk or danger of disruption of the
continuously operating system. In practice, that is the ability
of the system to withstand sudden disturbances with minimum
disruption to its performance.

From an operational point of view, the power system is
secured if important electrical variables keep within an ac-
ceptable level, such as bus voltage magnitudes and angles,
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frequency, and power flows in response to disturbances (con-
tingencies) like an electric short circuit, change of transmission
system configurations due to faults or sudden load increase.
Security Assessment (SA) is an analysis performed to deter-
mine whether and to what extent a power system is safe from
serious interference in its operation. The SA carry outs to
meet the operation requirement in two manifests: (1) surviving
the ensuing transient and moving into an acceptable steady-
state condition, and (2) in this new steady-state condition,
all components are operating within established limits [2].
Followed by this time framework, Static Security Assess-
ment (SSA) evaluates the steady-state response and Dynamic
Security Assessment (DSA) analyzes the transient response.
The SSA is the topic of concern for this paper as utilities
companies mainly take this into account for planning and
operation purposes. The acceptable level of variables such as
transient voltage magnitude dip and steady-steady violation
or frequency excursion is determined by reliability criteria
provided by, for instance, Western Electricity Coordinating
Council (WECC) or North American Electric Reliability Cor-
poration (NERC) standards.

The SA can also target to determine the frequency-related
violation or voltage violation for both dynamic or static
analyses. The former is becoming more challenging in power
system operation and planning, especially with the increasing
penetration level of IBR, which brings about insufficient
inertial and primary frequency responses [3], [4]. The authors
in [5] consider the frequency security analysis to provide an
appropriate frequency control scheme when power systems
are utilized the wind energy or frequency security index. This
determines the frequency security based on all aspects of the
frequency profile presented to specify the relative distance
from the security margin [6]. The significance of voltage
violation is apparent as the reason for several large blackouts
is due to inadequate reactive power supply. For this purpose,
the SA may perform to either estimate the distance to the nose
point of P -V and/or V -Q curves as a margin [7], or classify
multiple operating conditions for voltage stability assessment
[8].

The SA is also categorized for security classification or
security margin estimation purposes. Classification determines
whether the power system is secure or insecure with regard
to the threshold, whereas in security margin, the distance
(margin) to the insecure condition, the violation threshold, is
computed. For instance, an online voltage security assessment
practice to prevent a large-scale blackout and an estimation
loading margin regarding transient frequency criteria capture
classification and estimation tasks, respectively [9], [10]. This
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paper focuses on classifying static voltage in the SA, followed
by contingency scenarios.

Besides the traditional methods for the SA, such as lookup
tables and nomograms, in which the operator decision was
essential, the automated SA mechanism uses a model to
determine the security statutes regarding the value of system
variables and the measurement of so-called features. Thanks
to data availability by sensors and/or parameter estimation, ex-
tensive usage of artificial intelligence (AI) methods are found
in the literature for the SA. The applications of NN can be to
evaluate the system security by screening the credible contin-
gencies with loading condition and the probable contingencies
as the input [11], and to estimate loadability margin concerning
frequency deviation with preventive control [2]. A real-time
SA to increase awareness about plausible future insecurity
is applied using the Decision Tree (DT) form collection of
Phase Measurement Units (PMUs) data [12]. An attempt to
classify whether the power system can tolerate an (N − 1)-
fault during different conditions is analyzed via Support Vector
Machines (SVM) with the practice of Principal Component
Analysis (PCA) for dimensional reduction of feature space
[13]. In addition to NN, the promising results of deep learning
(DL) frameworks for image and speech recognition caused an
emerging usage of DL for SA purposes to capture immense
amounts of data and deliver valuable information. As a typical
network model, Convolutional Neural Network (CNN) can
be exploited for power system transient stability assessment,
instability mode prediction, and small-signal stability [14],
[15].

All above models are associated with grid structure data
for input features, meaning that a fixed size of grid data
assuming that instances are independent, is fed to the models.
For example, even if a graph represents a grid data format like
an image, it has a banded structure in its adjacency matrix
since all nodes are formed in a grid. This is no longer valid
for graph data as the number of neighbors to each node is
variable, and difference in size and shape of within graph
dataset can not handle using resizing or crop operation in
images. As a unique non-Euclidean data structure and the need
of permutation invariant for for machine learning model due of
graph isomorphism, GNN model is introduced. Graph analysis
focuses on node classification, link prediction, and clustering
tasks. Indeed, GNN models are DL-based methods performing
on the graph domain.

Due to the promising results of GNN in social science, nat-
ural science, protein-protein interaction networks, and knowl-
edge graphs, broad usage of GNN models can be noticed
in the literature [16]. However, the application of GNN in
power systems is not vast compared to other domains, and
usage of the GNN models in power systems is discussed
in [17]. For example, the GNN model using a power flow
solution exploited for predicting the electricity market prices
addresses scalability and adaptivity challenges of existing end-
to-end optimal power flow (OPF) learning results [18]. In
security concerns, [19] provides a scheme combining GNN
and recurrent neural networks for stability classification and
critical generator identification in transient assessment. A
graph convolutional network (GCN) framework can be applied

for fault location identification in a distribution network,
indicating GCN model robustness to limited bus measurements
and outperforming other machine learning models [20]. As
there is a lack of a GNN model for the SSA, this paper seeks
to form a GNN framework for voltage SSA.

Regardless of which model is used for the SA task, electrical
variables such as active/reactive power line flow, bus voltage
angle, and magnitudes, active and reactive power of each bus
load are mainly considered for input features. This feature
space lacks the topological knowledge of the power system,
as one may represent the power grid as a graph where buses
and lines are illustrated as nodes and edges, respectively. The
large scalability of the power system motivates researchers to
model it as a graph to study the system vulnerability in the
topological context using centrality measures. These measures
may indicate the most salient part against random failures and
directed attacks [21], [22]. In this context, the power system
characteristics coming from topological information may assist
in analyzing the impact of network structure changes to
enhance the model performance and ensure robustness for the
SA. The centrality measures can be easily computed using
the network topology processor’s information implemented
in Energy Management System (EMS). To the authors’ best
knowledge, there is no work in the literature to examine elec-
trical and topological-related variables in the SA framework.
Therefore, this paper proposes a method for voltage SSA based
on the GNN model that combines electrical variables obtained
by power flow solution and topological parameters defined by
grid centrality measures.

With regard to the importance of SSA in power system
operation and planning and considering the increment of
uncertainty and incident in the power system, this paper is
to deliver a resilient framework for static voltage security
assessment. The proposed framework is validated in IEE 118-
Bus, in which the results indicate that the GNN-based SA
model outperforms the traditional NN model. Through the
model robustness and sensitivity investigation, the GNN-based
model also presents better performance metrics revealing that
the proposed model is more capable of capturing uncertainty
and obtaining promising output. The main contributions of this
work are:

1) The SA schemes lack the knowledge of topological
changes occurring during contingency scenarios or un-
planned incidents and change the power grid structure.
This paper considers the power grid as a graph to add
topological information to the electrical features space.
All structural changes can then be observed and mea-
sured using graph centrality measures. The new feature
space is more informed about electrical and structural
variables.

2) The common practice in the SA is to use the grid
format data as independent features. In this fashion,
the connection information in the graph representation
is missed. After presenting the power grid as a graph
with both electrical and topological features, this paper
delivers the SA model based on the GNN model, where
each sample is a graph of the power grid after an incident
where features are embedded in each node. Security
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classification is then transferred to graph-level classi-
fication using the GNN model. Indeed, a graph dataset
encompassing both electrical and structural features per
bus (node) for each sample is used to classify the graph
as secure or insecure with defined security criteria. The
advantage of the GNN model is to benefit the local
information of each node where during model training,
the node features are more knowledgeable due to shared
and updating information of neighbors nodes.

3) The proposed approach is pretty straightforward to fol-
low and implement. In addition to the electrical variables
generator by power flow results, it only needs to have a
graph measures generator for centrality measures. Fur-
thermore, the proposed SA GNN-based is constructed
as a comprehensive framework to examine the DSA in
frequency, voltage violation, etc. Moreover, as the GNN
is an active research area, researchers have presented
efficient techniques for large-scale graphs, indicating no
issue with the scalability of the proposed SA model for
real power systems.

The rest of the paper is organized as follows. The preliminaries
definition are provided in Section II. The problem formulation
for the SA is expressed in Section III. The proposed GNN
scheme with regard to topological measures is discussed in
Section IV. The simulation procedure and the results of the
proposed method on the IEEE 118-bus system are indicated in
Section V, followed by model robustness and sensitivity anal-
yses in Section VI. Finally, a discussion about the suggested
method followed by a conclusion is stated in Section VII.

II. PRELIMINARIES

A graph G is defined as G = (V,E), where set V is the set
of vertices (nodes) and E is the set of edges. Here, V and E
are always finite. An edge x, y is said to join the vertices x and
y and is denoted by xy. A directed graph is a connected one
where all the edges are directed from one vertex to another.
In contrast, a graph where the edges are bidirectional is called
an undirected graph. The Adjacency matrix of the graph G =
(V,E) is an n×n matrix A = (aij), where n is the number of
vertices in G, V = {v1, . . . , vn} and aij = number of edges
between vi and vj . When aij = 0, (vi, vj) is not an edge
in G. The matrix A of an undirected graph is symmetric, i.e.
AT = A. In the case of a directed graph, the same definition
remains while the matrix A is no more symmetric and depends
on the edges direction. The Laplacian matrix or Kirchhoff
matrix of a graph carries the same information as the adjacency
matrix but has different valuable and vital properties, many
relating to its spectrum. The laplacian matrix is defined as
L = D−A, where D is a diagonal matrix indicating the node
degree matrix.

III. PROBLEM STATEMENT

In this section, the static voltage security analysis is dis-
cussed to determine the security status of the power system.
Many sources make power systems vulnerable, such as natu-
ral calamities, complement failure, fault, internal or external
intrusion, human error, etc. In this case, the power system

should be able to continue servicing in case of unpredicted
contingency. If any vulnerability sources interrupt services,
like an outage or blackout occurrence due to cascading fail-
ure, the system is insecure (vulnerable). In static security
assessment, post-contingency time framework, regardless of
transient behavior, is taken into account where the system
reaches out to a new steady state operating points. If the
new operating points meet the defined system limitation and
reliability criteria, the system is said to be statically secure. In
this fashion, a fast and reliable solution is necessary to assess
the security of numerous operating strategies to reduce the risk
of catastrophic incidents. This attempt is involved due to vast
sources of vulnerabilities, the large scale of the power system
with nonlinear behavior, different operating and operational
strategies, changes in topologies, and the computation burden.
Therefore, a classification model is an effective approach that
can deal with with the difficulties. Classifiers’ merits are that
they can be developed offline, current and future operating
states can be quickly assessed, and classifying a new steady
state power system condition into a secure or insecure class
is trivial and does not need protracted computations of an
analytical solution.

In the SSA framework, the security variables could be
bus voltages or line flows indicating the thermal limits. This
paper considers bus voltage as a security variable; however,
the proposed scheme can be applied to other variables and
categories, such as dynamic assessment. In the SSA, following
a contingency, each bus voltage value is analyzed at post-
contingency in which the transient response has died down.
As a result, the steady state of voltage (power flow solution)
should not violate the range defined by operating limits. It
is worth noting there is no updated guideline for the voltage
violation range at the steady-state analysis when the power
grid is utilized by the IBRs. However, its impact on the
transient response of voltage trajectory for reliability criteria
is discussed in [23]. In this regard, the problem statement
is straightforward: following a contingency scenario, we are
seeking to define a model that classifies the post-contingency
condition of the power system (steady state) based on bus
voltages according to reliability criteria. Therefore, the SA
model is to classify secure and insecure conditions and notifies
the operators to steer the system away from the insecure state
in adequate time.

To address the defined problem, this paper proposes apply-
ing the GNN framework for the SA. As the power grid may
be analyzed in the graph representation, the problem here is
formulated as graph-level classification, and a graph including
its information is assessed for security purposes. The details
of the GNN-based model are described in Section IV.

Graph input may also contain hidden information in its
structural property, and shared local node information may
enhance the model performance. Traditional and most applied
models work with grid format input features to label the input
dataset as secure/insecure for binary classification (or multi-
class SSA [24]), where input features are independent, and
there is no information between each feature. To benefit the
edge connectivity of the power grid and append the local node
information from neighbors to boost model performance, the
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GNN framework is developed. In this framework, the status
of the power grid at steady state condition after contingency
is considered as one sample instead of independent variables
such as nodal voltage and line flow. For instance, the number
of variables for one input of the non-GNN model could be the
number of chosen features multiplied by the number of buses.
In contrast, the GNN model only takes one graph as input,
and all information is embedded in nodes or edges.

IV. THE PROPOSED SA MODEL

Two main modules can explain the proposed procedure for
the SA model as A. Feature Generator Engine to create input
features, and B. the GNN learning model for the SA model
shown in Fig. 1.

Topological data

SA Model

Feature Generator Engine

Graph Representation 
of Grid

Contingency Scenario Results

GNN-based Learning Model 

Data Labeling based on Reliability Criteria 

Power Grid

Graph Representation

Electrical data

Fig. 1. Procedure of the GNN-based SA model.

A. Feature Generator Engine

1) Electrical Variables: Electrical features are selected
based on engineering knowledge associated with the SA prob-
lem and statistical correlation coefficients to ensure variables
fluctuate in relation to each other and eliminate redundancy.
The typical electrical variables include line active and reactive
power, voltage magnitude, and angle. Considering voltage SSA
problem, the following are chosen as electrical features in the
input dataset:

• The voltage magnitude of each bus, Vmag

• The active and reactive of each bus, P,Q

As the power grid provides numerous measurements as an
extensive dataset, the SA may involve the curse of dimension-
ality. As only three leading electrical variables are considered
in the procedure, the dimensional reduction (DR) approach
can not be relevant. For numerous variables, the SA may
involve the curse of dimensionality, which techniques such as
PCA and fisher discrimination can be applied to identify the
most significant and valuable subset of features for accurate
classification [13], [25], [26].

2) Topological Variables: Power grids have grown organ-
ically over the years in a random way to achieve economic
benefits and safety, leading to a widely distributed grid with
many connections between generation units and substations.
Therefore, the complexity of the links and being a large-scale
system lead researchers to study power grids in the context
of graph representation using statistical tools for vulnerability
studies [27]. Table 5 in [28] reviews various resilience analysis
and improvement studies in graph context. This motivates us
to investigate the structural properties of the power grid and
append topological features into feature space.

In addition to knowing the number of nodes and edges in
a graph, it is worth learning the network’s characteristics to
indicate the important part of a network. The metrics so-called
graph centrality generally measure a unit’s prominence; in
different substantive settings, i.e., identify the most critical
nodes in a graph given its topology with the various definitions
of importance. Many various centrality measures have been
proposed over the years [29]; in this paper, the most applicable
measures in the power grid are discussed as follows to state
as a new feature for each bus.

Degree centrality (Cd) is a local measure and the simplest
centrality measure. It implies that the nodes with a higher
degree deg(v) i.e., connected edges, are more solid, and the
normalized degree centrality is defined as

Cd(v) =
deg(v)

n− 1
=
L(v, v)

n− 1

Clustering Coefficient (Cc) is a measure of degree to which
nodes in a graph tend to cluster together. For each node
i, it is the number of edges between neighbors of a node,
divided by the total number of possible edges between those
neighbors Cci = 2ei/ki(ki − 1) where ki, ei are the number
of he number of neighbors and connected edges between them,
respectively.

Betweenness centrality (Cb) consists both of a node and
an edge. The node betweenness as most widely used reflects
the influence of a node over the flow of information between
other nodes, especially in cases where information flows over
a network primarily follows the shortest available path. The
node betweenness centrality is defined as

Cb(v) =

∑
s6=v 6=t∈V

σst(v)/σst

(n− 1)(n− 2)/2

where σst is the number of shortest paths from s to t and
σst(v) is the total number from the mentioned paths that pass
through vertex v.

Closeness centrality (Ck) is a way of detecting nodes that
can spread information very efficiently through a graph. That
is, a node is vital if it has a short distance from many other
nodes and defined as

Ck(v) =

∑
t∈V \v

dG(v, t)

n− 1

where dG(v, t) is shortest path length between vertices v and
t. This measures how far away a node is from the rest of the
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network instead of its closeness. Therefore, some researchers
define closeness to be its reciprocal.

The general concept of the shortest path in a graph is
not an appropriate metric for the power grid. The shortest
path (geodesic path) between two nodes in a graph is a path
with the minimum number of edges (or minimum sum of
edge weights for a weighted graph). This definition should
be modified to cope with power grid characteristics since the
electrical flow finds a path with minimum impedance value.
So, electrical distance dZ defined by [21] is considered for
computing shortest path distance based on line impedance as:

dZ(v, t) = ‖
∑

(i,j)∈E∩ path(v,t)

Zpr(i, j)‖

where Zpr(i, j) is the line impedance of the link (i, j).
The measures obtain the influential nodes over the graph

from a distinct aspect of view. Therefore, the topological
measures may aim to fill the possible gap between measures.
Hence, beyond electrical variables, the above measures indi-
cating the topological importance of nodes, are added into
features for voltage SSA as two different database shown in
Fig. 1. In other words, electrical and topological are embedded
in each node as feature vector

[V i
mag, P

i, Qi, Ci
d, C

i
c, C

i
b, C

i
k], ∀i ∈ Bus set

The representation of feature vector is illustrated in Fig. 2, in
which the graph input data with node embedding futures is
deployed for the learning task.

Graph Neural 
Network
(GNN)

Graph Input Dataset SA Model

Security Classification

Insecure

Secure

Feature vector

Electrical feature Topological feature

Fig. 2. Embedding Feature Vector

B. Learning Model: Graph Neural Network
In this paper, Graph Neural Network (GNN) framework

is chosen as a learning model for voltage SSA. GNN is a

type of deep neural network that is suitable for analyzing
graph-structured data. In addition to the deficiency of Convo-
lution NNs (CNNs) and Recurrent NNs (RNNs) with graph-
structured data (well-defined only for grid-structured data and
only over sequences, respectively, like images and texts), these
models suffer the variation of size and shape of input as
typically that except a fixed size of the input. Moreover,
the CNN model is sensitive to input permutations, such as
rotating an input picture. To address these challenges, GNN
models are proposed to work with graph-structured data as
they can handle the changes in shape and size of inputs and
are permutation invariant. The overall framework of the GNN
model for graph-level classification is shown as in Fig. 3.

The main idea here is to generate representations of nodes
that include the information on the graph’s structure and any
feature information it might have [30]. The procedure of GNN
is encapsulated in neural message passing in which the feature
vector of the node is exchanged between nodes and updated
using neural networks. There are two main components in
GNNs:
• Aggregate operator G: permutation invariant function to

its neighbors to generate the aggregated node feature.
• Update operator F : combining the message from pre-

vious aggregated node feature to generate updated node
embedding.

G and F can be any arbitrary differentiable functions (i.e.,
neural networks), where G has to be permutation invariant
operator. The general procedure of aggregation and updates for
a sample graph is shown in Fig 4. The node neighbors form a
computational graph to aggregate and update information, such
as from node A’s local graph neighbors (i.e., B, C, and D).
The messages coming from these neighbors are also based on
information aggregated from their respective neighbors, and so
on. This visualization shows a two-layer version of a message-
passing model since the information is aggregated from two
hops. Notice that each node has its computation graph in which
the GNN forms a tree structure by unfolding the neighborhood
around the target node. The NN modules act as both G and
F meaning that the input, the aggregated information from
node neighbors, passes through to a neural network to generate
updated node embedding features.

Mathematically, for graph G, a hidden embedding vector

z1
z2
z3
z4
z5
z6
z7
z8
z9
z10

Input Layer Graph Convolution Layers Output Layer
(An Embedding Vector)

Graph Neural Network 
(GNN)

…
Security Classification

• Secure
• Insecure

Readout 
Layer

Final 
Classifier 

Layer

Fig. 3. General GNN Framework for Classification Problem.
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Graph Neural 
Network
(GNN)

Graph Input Dataset

SA Model

Security Classification

Insecure

Secure

NN

B

C

A

C

E

A

B

A

E

A

D

NN

NN

NN

Input Graph Computational Graph

K=2

E

C

F

D
B

A

K=1

Fig. 4. Computational graph of node A: aggregation of information from two
hops away

of a node hku corresponding to each node u ∈ V is updated
according to aggregated information from u’s graph neighbor-
hood N (u) [30]

h(k+1)
u = F (k+1)

(
h(k)u ,Gk({h(k)v ,∀v ∈ N (u)})

)
(1)

where k as iteration ( or layer) indicates number of hope that
every node embedding contains information from its k-hop
neighborhood. After k iterations, the embedding hu of node u
may encode the topological and feature-based information in
k hop neighborhood. After running K iterations of the GNN
message passing, the output of the final layer can be used to
define the embeddings for each node, i.e., zu = hu(K),∀u ∈
V .

Depending on the choice of aggregate and update function,
there are many GNNs models reviewed in [31]. For example,
the basic GNN framework is similar to a multi-layer perception
(MLP) as it has linear operations followed by a single element-
wise non-linearity. In this paper, Graph Convolutional Network
(GCN) model [32] is considered the SA model. The general
idea of GCN is to apply a convolution operator like CNN but
over a graph.

1) Graph Convolutional Network: The GCN is based on
spectral methods, in which the representation of a graph lies in
the spectral domain, utilizing the Laplacian eigenvectors. The
propagation rule is inspired by a first-order approximation of
localized spectral filters on graphs. Given a N ×M feature
matrix X (N : number of nodes, M : number of features), the
GCN procedure is as [32]:
• Construing self-connection by adding the identity matrix
IN to the adjacency matrix A

Ã = A+ IN (2)

• Using the symmetric normalization of the Laplacian to
define convolutional filters

Lnorm = D−
1
2LD−

1
2 (3)

• Applying normalization trick to solve explod-
ing/vanishing gradient problems as

IN +D−
1
2AD−

1
2 −→ D̃−

1
2 ÃD̃−

1
2 (4)

where D̃ii =
∑

j Ãij acting as a row-wise summation of
the adjacency matrix with self-connection producing the
degree of each node.

Given H as the feature matrix and W the layer-specific
trainable weight matrix, the update rule the layer-wise propa-
gation rule is

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(5)

where σ is an activation function, such as the ReLU(·) =
max(0, ·), H(l) ∈ RN×D is the matrix of activations in the
lth layer; H(0) = X . After K layer, the GCN produces a
node-level output HK = Z (an N × F feature matrix where
F is the number of output features per node). In this last layer,
node embedding h

(K)
u can pass to a readout layer to present

one vector for the final classifier R with learnable parameters
to perform graph-level predictions as

zG = R
(
Readout(h(K)

u )|u ∈ G
)

(6)

In fact, the whole procedure lies on the symmetric-normalized
aggregation as well as the self-loop update approach for each
node as

h(l+1)
u = σ

W l
∑

v∈N (u)∩{u}

hlu√
|N (u)||N (v)|

 (7)

where | · | indicates the size of node’s neighborhoods to train
the weight matrix W .

Considering the voltage SSA as supervised graph-level clas-
sification, the softmax function Eq. 8 is applied to determine
the predicted probability that the graph belongs to the class
Gi.

softmax(zGi
) =

(
ez

T
Gi∑n

i=1 e
zT
Gi

)
(8)

where zGi is graph-level embedding over a set of labeled
training graphs T = {G1, . . . , Gn}.

Therefore, the GCN model is applied for voltage SSA in
graph-structured data. The task here is graph-level security
classification. Each input is a power grid graph at post-
contingency conditions, in which each node has topological
and electrical features. The node features are aggregated and
updated during the learning procedure with their k-neighbors
information. Then, last layer classifies the final representations
of each graph obtained by readout layer as secure/insecure.
This procedure is repeated to train the weight matrix w.r.t
minimizing a loss function. The actual label as secure/insecure
is defined according to the reliability criteria of bus voltages
in steady-state.

V. SIMULATION PROCEDURE AND RESULTS

For the simulation purposes, MATLAB and PSS/E software
are used for generating different cases. The GCN learning
model is implemented using PyTorch Geometric [33].

A. Data Generation

In this paper, the IEEE 118-Bus system is considered for the
simulation. This system represents a simple approximation of
the American Electric Power system (in the U.S. Midwest) as
of December 1962 that contains 19 generators, 35 synchronous
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condensers, 177 lines, 9 transformers, and 91 loads. The
primary practice to generate data in power system applications
is to run different contingency scenarios. Due to the highly
interconnected nature of modern power systems and various
energy market scenarios, operating conditions and even the
topology of a power system changes frequently. Capturing
all changes in the power system while generating data is an
intricate task since the source of variation is unclear, and the
power grid operates at various points. An approach mentioned
in Procedure 1 is regarded for data generating to provide a
rich dataset. Two source of variations are assumed in data
generation loop as follows:

• Load variation during day: The actual net load varies
during the day because of the time of day. Here, it is
assumed that the 118-bus system follows the same feature
as the estimated net load for 2020 from the CAISO ”Duck
Curve” [34]. Then, the actual load is scaled by the same
factor as the ”Duck Curve” for different times of the day.
Each scale factor is applied for randomly chosen 70% of
load buses mimicking changes in load profile.

• Stressed conditions: In this case, the P-V analysis is
involved using a series of load flow solutions for incre-
mental power transfers (MW) between source (delivers
transfer power) and sink (absorbs transfer power) areas
at the constant power factor. Generators at buses 65, 66,
and 69 and load at buses 20, 21, 22, 23, and 115 are
considered source and sink areas, respectively. This case
results in various operating conditions before the voltages
pass the threshold or the load flow does not solve. The P-
V solution parameters applied PSS/E setting are 0.5 MW
as power mismatch tolerance, and 1000 MW as maximum
incremental transfer with an initial transfer of 10 MW by
10 MW transfer increment tolerance.

Voltage operation threshold is assumed 0.90-1.10 p.u. of the
steady-state of nominal voltage (post contingency), which
is defined by category P1 of TPL-001-WECC-CRT-3.2. The
value outside of the range violates the reliability criteria and
needs the operators’ action.

Procedure 1: Data Generation
/* capturing load variation. */

for each operating point do
for scenario in the contingency list do

/* capturing stressed conditions. */

while power transfer < maximum
incremental transfer;
do

solve power flow;
if (solution not found and voltage
violation) then

break, go to the next scenario;
else

increase power transfer;
end

end
end

end

As a result, 21379 cases were generated, out of which
19668 cases were secure, and the remaining 1711 cases were
insecure. The result shows an imbalanced dataset which is
rational as the power grid should be secure for most single
contingencies (N -1). Each sample indicates a power grid
in post-contingency conditions as a graph. Electrical feature
obtained by the power flow solution and topological feature
computed by centrality measures are then embedded in each
node feature vector. The dataset is randomly split into a
60:20:20 ratio for training, validation, and test sets. The batch
size indicating the number of training samples utilized in one
training iteration is 128.

B. GCN Model Configuration

The GCN architecture for voltage SSA as a graph-level
classification task is as follows:

• Convolutional layer: Embedding each node by perform-
ing 6 layers of GCN with ReLU(x) = max(x, 0) as
activation function for each layer, all with a hidden-
dimension size of 32.

• Readout layer: Aggregating node embeddings into a uni-
fied graph embedding by averaging the node embeddings

• Final classifier: A linear classifier with a softmax func-
tion to transfer embedding size of hidden-dimension to
number of classes.

This architecture results 10,946 trainable parameters.

C. Optimization Set up

Considering binary cross-entropy as loss function Eq. 9,
the model parameters are trained using the adaptive moment
estimation (Adam) optimizer with an initial learning rate of
10−3 and decay the learning rate based on training results to
a minimum of 10−5 for regularization for 200 epochs.

L = −(y log(ŷ) + (1− y) log(1− ŷ)) (9)

where y is true label and ŷ denotes the predicted label by Eq.
8.

D. Performance Evaluation Metric

For classification problems, evaluation metrics are used to
compare the expected class label to the predicted class label.
Since the power system should be operational safe for (N−1)
contingency, the majority of the dataset is secure, leading to
an imbalanced dataset. Therefore, F1-score and G-mean as the
efficient metrics for imbalance data are studied [35] :

F1-score = 2× precision× recall
precision + recall

G-mean =
√

recall× specificity

Considering confusion matrix in Table I that indicates all four
possible outcomes,we then have precision = TP

TP+FP , recall
= TP

TP+FN , and specificity = TN
TN+FP .
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TABLE I
CONFUSION MATRIX

PREDICTED PREDICTED
POSITIVE NEGATIVE

ACTUAL TP FN
POSITIVE (TYPE II ERROR)
ACTUAL FP TN

NEGATIVE (TYPE I ERROR)

TP: True Positive, FN: False Negative
FP: False Positive, TN: True Negative

E. Case Studies Results

As a base case, single line contingency (N − 1) scenarios
according to Procedure in Section V-A are run to generate
samples. The same dataset but in grid-structure data is applied
to an MLP model to investigate the application of GCN. For a
fair comparison, the MLP model is configured to have a similar
number of trainable parameters (10,699) to the GCN model.
The MLP model consists of 4 fully connected layers (dense).
Other settings, such as the activation function, the number of
hidden channels, and optimization parameters, are the same.
Training performance metrics and loss are depicted in Fig. 5
with electrical and topological input features. As shown, for
the same number epoch, not only does GCN provide a better
classification result, but its loss value shows convergence to a
smaller value than the MLP model.
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Fig. 5. Models F1-score and loss: MLP and GCN comparison

Considering the performance metrics mentioned in V-D,
Table II indicates both GCN and MLP models performance.
For investigation on features type’s impact on voltage SSA,
the models have trained separately for four different groups
of input feature
• Electrical variables: bus voltage magnitude, bus active

and reactive power;
• Topological variables: bus degree centrality, bus clus-

tering coefficient, bus betweenness centrality, and bus
closeness centrality;

• Voltage magnitude plus topological variable;
• Both electrical and topological.

The results show that the GCN model outperforms the MLP
model as it provides higher evaluation scores. Still considering
only topological delivers acceptable performance, and adding
the voltage magnitude variable increases the test performance
by 8.43% (F1-score) and 6.90% (G-mean). This is the expected
result, as the voltage variable plays a key role in voltage
security assessment.

Moreover, one may state that there is only a minute im-
provement in metrics either the GCN model is deployed or

topological variables are added. The point here is that improv-
ing the performance of an accurate model is challenging since
the model may face overfitting. The capacity of the proposed
model is analyzed later on. Furthermore, in power system
security assessment, the consequences of misclassification may
result in a blackout or operation cost. Considering the result
of both variables mentioned in Table II, the GCN model could
do the task by providing correct classification by 106 samples
(more FP and less FN rate) obtained from F1-score. Regarding
practical application, each sample’s correct classification is
substantial and can be identified via penalty matrix [36].
NERC’s guidelines approved a matrix comprising violation
risk factors and violation severity levels, establishing ”base
penalty amounts since the protection and remedial action are
activated based on classification output. Therefore, slightly
enhancing the performance of the SA model not only lowers
the risk of the consequences of a wrong decision but also
avoids paying penalized fines.

The other finding refers to the importance of topological
variables. Once voltage magnitude is added to topological
variables, F1-score and G-mean metrics increase compared to
only electrical variables. This indicates topological variables
have meaningful intake in the voltage security analysis. The
physics behind this observation is not clear. However, the rea-
son would be incorporating the importance of buses across the
grids reveals the impact of topological changes. Combining all
electrical and topological variables in the feature set provides
the highest value of evaluation metrics. In all cases, the GCN
model outperforms the MLP because the GCN model captures
and updates node information from its neighbors, leading to
more informative node features. Indeed, the performance of
voltage SSA is enhanced by the usage of information sharing
and embedding between buses.

VI. MODEL CAPACITY ANALYSIS

To analyze the ability of the built models to adapt properly
to new, previously unseen samples so-called generalization of
model, following scenarios are simulated to observe model
capacity.

1) Robustness analysis: In this case, different datasets are
generated to evaluate the robustness of models for unseen
samples. For the case 1, a new operating point scaled by
”Duck Curve” is generated randomly, and then single line
contingencies followed by the increment of power transfer in
the system are applied, such as Procedure 1. 1795 samples are
generated in this case. Case 2 for robustness analysis of models
is constructed based on double line contingency (N -1-1) from
the normal operating point. In this fashion, 15923 double line
scenarios, including base case, are generated without running
stressed conditions. Only 500 cases out of all double line cases
are randomly chosen for power transferring for the sake of
data generation speed. This results in 5108 samples. Now,
both new datasets are evaluated for the trained models to see
the robustness of the SA for unseen datasets. Table III states
the robustness analysis results, and performance of models
as the bar graph is shown in Fig. 6 for visual observation. As
seen, the F1-score drops in both models; however, in both new
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datasets and for all variable types, the GCN drops less than
the MLP model, indicating more model capacity to classify
the unseen data. The model’s performance varies depending on
the variable type. That is, a relation between feature space and
new cases is noticed. Since the operating point is associated
with the electrical variables, the trained models based on
those are more sensitive than double-line contingency cases
that address the topological changes. It also observed that
trained models based on topological variables are robust for
new operating points and sensitive to double-line contingency
datasets. Thanks to the combination of both variable types
in features, the models perform robustly for both new cases.
That is, the model can capture the variation of new datasets
from changes in operating point or grid topology. Furthermore,
the GCN outperforms the MLP, signifying the functionality
of GCN due to feature embedding aggregation and updating
operation.
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Fig. 6. Bar Graph of Robustness Analysis Results

2) Variables Sensitivity: Beyond the impact of the unseen
dataset, the model can be analyzed when input variables are
changed to see how it may impact output classification. Here,
sensitivity analysis examines the change in the target output
when one of the input features is perturbed. Regarding the
state estimation architecture, variables in the SA are estimated
from measurement and status, specifically electrical variables.
Topological variables might face misinformation generated
by the estimation of topology processors due to reported

inaccurate data coming from SCADA or limitation of source
measurement. However, it is unlikely that changes in the
electrical variables. Therefore, variation of voltage magnitude
is considered for sensitivity analysis as electrical variables
are mainly studied for perturbation analysis due to the device
measurement error or being prone to false data injection.

Considering a general state estimation architecture shown
in Fig. 7 from [37] related to the SA, a perturbation block is
only added to to mimic the voltage variation due to the state
estimation (SE) error. It should mention that in practice, the
disturbances are mainly added to measurements, and here the
block only represents the way of voltage variations (SE error)
to do sensitivity analysis. We randomly choose 10% of buses
to inject 5% nominal voltage magnitude as a new test set.
One may ask that the SE bad data detection (BDD) scheme
can capture this variation and label it as an anomaly before
it goes through monitoring and operation. As in practical
practice, there is not a specified threshold for BBD, and it also
varies depending on operational considerations; the proposed
scenario can be applied without practical issues. The models’
performance for this scenario is mentioned in Table IV, in
which the superiority of the GCN model compared to the
MLP model is once more seen as the performance of the
GCN classifier is less degraded. Although classification perfor-
mance reduces, using the GCN model with both electrical and
topological information results in less sensitivity for voltage
magnitude variation. That is clear that this scenario does not
apply to models with only topological variables.

VII. DISCUSSION AND CONCLUSION

This paper introduced the GCN model for voltage SSA
by considering the topological variables obtained from the
topology of the power grid after contingency scenarios. The
following can be discussed in this framework:

A. Do the topological features boost performance?

As the results showed, the topological variables could
enhance the model performance for security assessment and
increase the model’s capacity through robustness and sensitiv-
ity analysis, particularly for the GCN model. Furthermore, the
type of centrality measures is also indispensable. Although

TABLE II
BASE DATASET PERFORMANCE EVALUATION: AVERAGE VALUE OVER 10 RUNS

F1-SCORE G-MEAN

VARIABLE TYPE MODEL TRAINING VALIDATION TEST TRAINING VALIDATION TEST

ELECTRICAL
GCN 99.25 99.08 99.09 97.61 97.04 97.08
MLP 99.06 99.16 99.08 97.02 96.30 96.89

TOPOLOGICAL
GCN 92.43 91.95 91.57 91.30 91.00 91.23
MLP 92.26 92.29 91.08 90.30 89.05 90.63

VOLTAGE AND TOPOLOGICAL
GCN 99.36 98.86 99.29 98.12 97.22 97.53
MLP 99.04 98.32 99.09 97.40 97.02 97.03

ELECTRICAL AND TOPOLOGICAL
GCN 99.40 98.74 99.50 97.82 96.54 97.58
MLP 98.87 98.6 99.14 97.20 96.26 96.29
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TABLE III
ROBUSTNESS ANALYSIS RESULTS

F1-SCORE

VARIABLE TYPE MODEL CASE 1 CASE 2

ELECTRICAL
GCN 96.19 97.97
MLP 91.09 97.11

TOPOLOGICAL
GCN 90.34 83.25
MLP 89.69 82.97

VOLTAGE AND TOPOLOGICAL
GCN 91.22 98.50
MLP 93.22 94.50

ELECTRICAL AND TOPOLOGICAL
GCN 94.42 95.46
MLP 89.69 92.17

Case 1: New operating point, Case 2: Random double line contingency

Measurement

State EstimationNetwork Topology Bad Data Detection

Topological 
Features

Electrical 
Features

Perturbation
(Mimicking the SE

error)

GNN-based Security Assessment  

Observability 
Analysis

Breaker Status

Fig. 7. General State Estimation Architecture The dash line blocks are added
for sensitivity analysis of GCN based SA model.

the topological variables capture the power grid’s structure
properties, all graph centrality measures do not enhance per-
formance. During the simulation, harmonic centrality, which
measures the average distance of a node to the other nodes
in the network, was also computed. Adding this measure
interestingly lowered the best model performance in Table
II by 8.9%. The reason could be among the topological
feature voltage SSA may depend on nodes related measures
mentioned in IV-A2. Therefore, the measures referring directly
to distances can be misleading for the voltage SSA.

B. Training time

The GNN-based model involves feature aggregation and
updates from nodes’ neighbors, so the training procedure takes
longer than the MLP model. For instance, for both feature
types in Table II, the training time for the GCN and the
MLP is 1971 and 63 seconds, respectively. Although the GCN
model took much more time for the training (about 32 times
the MLP), it resulted in better performance than the MLP
for various scenarios. Moreover, the proposed voltage SSA
is applied for an offline SA scheme in which training time is
not a concern.

C. On a GNN Universal Framework for the SA

There is no limitation of the proposed GNN-based SA
model for voltage SSA to apply for any other security as-

TABLE IV
VARIABLE SENSITIVELY RESULTS

VARIABLE TYPE MODEL F1-SCORE

ELECTRICAL
GCN 97.90
MLP 94.01

VOLTAGE AND TOPOLOGICAL
GCN 98.77
MLP 95.66

ELECTRICAL AND TOPOLOGICAL
GCN 98.86
MLP 95.87

sessments such as frequency, and dynamic security assess-
ment [12], [34]. The framework is universal such that only
the procedure of data generation and reliability criteria are
required to be adapted. For example, in voltage DSA of
voltage, the dynamic simulation needs to be run, and then
bus voltage trajectories must monitor to apply appropriate
reliability criteria.

In conclusion, a GCN model as a GNN-based framework
is introduced for voltage SSA. Despite the traditional input
features such as grid format data, a graph format structure is
proposed for security analysis of the power grid. A graph then
represents the status of a power grid in which each node (bus)
consists of features where the GCN model acts on aggregated
and updated bus features from its neighbors to deliver a well-
informed design for the SA. In addition to electrical variables,
topologically related variables obtained from graph centrality
measures indicating a structural property of the power grid
are appended to feature space. A dataset capturing possible
variations such as daily change of load profile and grid stressed
condition for voltage stability are generated for model valida-
tion purposes. Simulation results show the outperforming of
the GCN model compared to the traditional neural network.
The impact of the new feature vector is observed in model
performance. Moreover, the proposed framework is studied
for robustness and sensitivity analysis to examine the model’s
generalization. The outcomes one more confirm the superiority
of the GCN model. As the GCN model makes a decision
using the neighbor information of each bus where the SA is
reformulated in the graph context, it provides more capacity
for security classification due to the information distributed
over the network. Although this paper focuses on voltage
security in the steady state, the developed scheme can simply
adapt to any security assessment, such as dynamic, considering
other stability problems like frequency.
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