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Abstract—This letter investigates a safe reinforcement learn-
ing strategy for grid-forming (GFM) inverter based frequency
regulation. To guarantee stability of the inverter based resource
(IBR) system under the learned control policy, a model based
reinforcement learning (MBRL) technique is combined with
Lyapunov approach which determines safe region of states
and actions. To obtain near optimal control strategy, the con-
trol performance is safely improved by approximate dynamic
programming (ADP) using data sampled from the region of
attraction (ROA). Moreover, to enhance the control robustness
against parameter uncertainty in the inverter, a Gaussian process
(GP) model is adopted by the proposed MBRL to effectively learn
system dynamics from measurements. Numerical simulations
validate the effectiveness of the proposed method.

Index Terms—Inverter based resource (IBR), virtual syn-
chronous generator (VSG), safe reinforcement learning, Lya-
punov function.

I. INTRODUCTION

POWER system frequency control is critical for main-
taining grid stability when imbalance between genera-

tion and load occurs. As the penetration of IBR, such as
renewable energy and battery storage, continues to increase,
modern power systems are facing significant challenges due
to reduced mechanical inertia and increased disturbances.
Therefore, power system stability control has recently spurred
much interest from both academia and industry [1], [2].

Various control methods have been proposed for IBR to pro-
vide frequency regulation services [1], [3], [4]. For instance,
both conventional synchronous generators (SGs) and IBR
employ the frequency droop control strategy, which adjusts the
active power output in response to frequency deviations. Droop
control-based inverters barely provide inertia support to the
grid. Consequently, a droop-control-based network is typically
characterized by a lack of inertia and sensitive to faults [5].
In the event of a disturbance, the system frequency may
undergo abrupt changes, potentially leading to the tripping of
generators or the unnecessary shedding of loads. To alleviate
the negative impact of low inertia, the virtual synchronous
generator (VSG) [6], [7] control was developed. This control
strategy emulates the frequency response characteristics of
SGs, augmenting the system with virtual inertia and damping
properties. Additionally, the values of inertia and damping in

VSG are more flexible than in SGs, which are not limited by
physical conditions (such as rotating mass). Therefore, IBRs
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can adjust the inertia adaptively to obtain faster and more
stable power output [8]–[10]. However, traditional frequency
regulation strategies for IBRs were usually designed based on
linearized small signal models [8], [9], [11], which makes
the control performance deteriorate quickly when frequency
deviations are large. Due to the challenges posed by the low-
inertia and nonlinearity of IBRs, advanced controls are needed
to ensure grid stability.

To deal with the challenges, various advanced frequency
controllers are developed recently [12]–[14]. Among these
methods, reinforcement learning (RL) technique is one of
the most promising approaches. In reference [13], a model-
free deep reinforcement learning (DRL) based load frequency
control method was designed. The challenge of designing
DRL-based power system stability controller lies in guaran-
teeing the control strategy won’t lead to unstable condition
after disturbances. However, the above mentioned conventional
model-free RL based controllers do not yield any stability
guarantees. Therefore, reference [15] proposed a Lyapunov
based model-free RL strategy for power system primary fre-
quency control, which can guarantee the system frequency will
reach stable equilibrium after disturbances. In [15] and [16],
Lyapunov stability theory is utilized to design the architecture
of recurrent neural network (RNN) controllers for power
networks. However, the system parameters (e.g., inertia of
SGs) need to be known in prior in order to train the neural
Lyapunov function [16], and whether the learned function
satisfies the Lyapunov conditions for all points in a region need
further investigation. Given the frequent adjustments of virtual
inertia and damping parameters in IBRs, the development of
a robust DRL-based frequency regulation controller for IBRs
could enhance their integration into the power system.

The primary contribution of this work is the development
of a safe MBRL strategy for GFM inverter based frequency
regulation. Motivated by [17], this strategy addresses the
challenges of ensuring controller stability and effectively
dealing with system parameter uncertainty. In the developed
MBRL controller, GP model is adopted to learn the unknown
nonlinear dynamics of the inverter system, and ADP [18], [19]
is used to improve the performance of the controller. Moreover,
to guarantee the system stability under the learned controller,
Lyapunov function is used to obtain the ROA. Different from
pre-training a neural Lyapunov function according to system
dynamics in [16], we design the Lyapunov function as the
value function of the Bellman’s equation in ADP. This allows
both the Lyapunov function and the MBRL agent to update
during training, leading to an enlarged ROA and improved
control performance simultaneously. In addition, the proposed
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Fig. 1. Diagram of the GFM inverter based primary frequency control.

MBRL controller is adaptive to the adjusting of inverter
parameters (i.e., virtual inertia and damping coefficients),
which means the controller will be more robust to parameter
uncertainty.

This letter is organized as follows. Section II formulates the
GFM inverter based frequency regulation problem. In Section
III, the stability guaranteed MBRL controller is designed. The
numerical simulations are presented in Section IV. Section V
concludes the letter.

II. GFM INVERTER BASED FREQUENCY REGULATION

The IBR primary control diagram is depicted in Fig. 1. We
assume the bus voltage magnitudes to be 1 per unit (p.u.), and
neglect the reactive power flows. The frequency dynamics of
VSG based power control loop of the GFM inverter can be
given by the swing equation [5], [16], [20]:

dθ

dt
= ω

M · dω
dt

= Pset − Pi −D · ω − u(θ, ω)

(1)

where, θ and ω are the voltage phase and angular frequency
deviation of the inverter, respectively. More specifically, ω =
ωi − ωn, where ωi denotes the generated angular frequency
of the inverter output voltage, and ωn represents the nominal
angular frequency of the inverter. u(·) denotes the control
action which is the active charging power (i.e., Pb in Fig.
1) of the battery energy storage systems (BESS). M and D
are the virtual inertia and damping constant of the inverter,
respectively. Pset and Pi are the active power set point and
real-time measurement of the inverter’s active power output,
respectively. In Fig. 1, Pi can be calculated as follows [21]:

Pi = Σj∈{i,g}ViVj [Bij ·sin(θi−θj)+Gij ·cos(θi−θj)] (2)

The element (i, j) of the admittance matrix Y , denoted as Yij ,
is defined by Yij = Gij + jBij , where Bij and Gij represent
the susceptance and conductance components, respectively. θg
is the voltage phase of the main grid. Note that lossy power
flow model is adopted in Eq. (2).

We aim to propose a control policy to improve the dynamic
performance of VSG after disturbances with the minimal cost.
The optimal control problem can be formulated as follows:

min
u

(uTRu+ xTQx)

s.t. Eq. (1), and u ≤ u ≤ ū, and u is stabilizing
(3)

where x = (θ, ω) is the state of the VSG. Q and R are
positive definite matrices. u and ū are the lower and upper
limitations of the control action, which determined by the
BESS maximum power capacity. As shown in Fig. 1, the
optimal action u(·) is optimized using the safe MBRL based
agent.

III. GFM INVERTER BASED FREQUENCY REGULATION
CONTROLLER VIA SAFE MODEL BASED REINFORCEMENT

LEARNING

The primary objective of the controller is to safely learn
about the frequency dynamics of VSG from measurements
and adapt the control policy π for optimal performance,
without encountering unstable system states. This implies that
the adjustment of the control policy throughout the learning
process must be performed in such a way that the system’s
state remains within the ROA. The parameter uncertainty
and nonlinearity of the AC power flow, as described in Eq.
(2), make the design of controllers for Eq. (1) challenging.
The proposed safe MBRL controller for GFM inverter based
frequency regulation is depicted in Fig. 2. In the proposed
controller, the frequency dynamics of VSG is learned by
the GP model with system measurements. The ROA for a
fixed policy is determined using Lyapunov functions. And the
control policy is updated by ADP based reinforcement learning
approach to expand the ROA. The details of the proposed
method are presented below.

By discretizing the dynamic model shown in Eqs. (1)
and (2), the dynamics can be reformulated as the following
nonlinear discrete-time system:

θk+1 = θk + h · ωk

ωk+1 = ωk +
h

M
(Pset,k − Pi,k −D · ωk − uk)

(4a)

where, h is the step size for the discrete simulation. The
subscript k denotes the discrete time index. Eq. (4a) can be
expressed as

xk+1 = f(xk, uk) = h(xk, uk) + g(xk, uk) (4b)

where f(·) encapsulates the true dynamics of the VSG,
comprising two components: a known model represented by
h(·), and a priori unknown model errors denoted by g(·).
In inverters, the parameter (e.g., M and D in Eq. (1)) can
undergo dynamic changes, which introduces uncertainties. To
ensure the stability and predictability of the system, we assume
the dynamics of the VSG is Lf -Lipschitz continuous, which
means that the dynamic doesn’t change too rapidly between
any two points in its domain. This assumption holds true for
the VSG system as described in Eq. (1), with a supporting
proof provided in Appendix III.

To enable safe learning, we adopt GP model to learn a reli-
able statistical system model described by Eqs. (1) and (2). GP
model is a powerful method in machine learning and statistical
modeling. GPs consist of random variables, and any finite
group of them follows a joint Gaussian distribution. In system
modeling, GPs are often used to capture complex relationships
in data [22]. According to the GP theory [23], there exists a
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parameter βn > 0 such that with probability at least (1− δ) it
holds for all n ≥ 0, that ||f(x, u)−µn(x, u)||1 ≤ βnσn(x, u).
µn(·) and σn(·) = trace(

∑1/2
n (·)) are the posterior mean

and covariance matrix functions of the GP model of the VSG
dynamics in Eq. (4b) conditioned on n measurements. In this
way, we can use GP models to build confidence intervals on
the inverter dynamics which can cover the true dynamics with
probability 1− δ.

After learned about the inverter dynamics from measure-
ments, the goal is to safely adapt the optimal control policy
without leading to unstable system conditions. The safety of
the controller is characterized by the safe region of states and
actions, commonly referred to as the ROA [24]. When the
system’s state falls within the boundaries of the ROA, the
dynamics outlined in Eq. (1) will remain stable. Conversely,
if the state ventures outside this region, the system is prone
to instability. We can use Lyapunov function v to determine
ROA for a fixed control policy π. Lyapunov function v is
a continuously differentiable function with v(0) = 0 and
v(x) > 0 for all x ̸= 0 [25]. Therefore, Lyapunov function
is Lv-Lipschitz continuous. Based on the Lyapunov stability
theory, we have the following theorem [23], [25]:
Theorem 1: If v(f(x, π(x))) < v(x) for all x within the level
set Θ(c) = {x ∈ χ\{0}|v(x) ≤ c}, c > 0, then Θ(c) is a
ROA, so that x0 ∈ Θ(c) implies xk ∈ Θ(c) for all k > 0 and
limk→∞ xk = 0.

The theorem indicates that when a fixed policy π is em-
ployed, applying the dynamics f to the state consistently
results in decreasing values in the Lyapunov function. Con-
sequently, the system state is assured to converge inevitably
towards the equilibrium point. Further details can be found in
[23]. According to the theorem, the determination of the ROA
is achieved by examining a level set of the Lyapunov function,
denoted as Θ(c). To compute ROA, the crucial steps involve
identifying an appropriate Lyapunov function and determining
Θ(c) that ensures the condition v(f(x, π(x))) < v(x) holds
for all x ∈ Θ(c).

The dynamics of VSG, denoted as f(·), are uncertain,
leading to uncertainty in v(f(·)). This introduces an addi-
tional challenge in determining Θ(c) using the above theo-
rem. According to the GP model, v(f(x, u)) is contained in
Υn(x, u) := [v(µn−1(x, u))±Lvβnσn−1(x, u)] with probabil-
ity higher than (1−δ). Lv is the Lipschitz constant of the Lya-
punov function v(·). To ensure safe state-actions are always
safe, we define the upper bound of v(f(x, u)) as un(x, u) :=
maxCn(x, u), where Cn(x, u) = Cn−1(x, u)

⋂
Υn(x, u).

Therefore, in accordance with the aforementioned theorem
and considering v(f(x, u)) ≤ un(x, u), the system’s stabil-
ity in Eq. (1) is assured if un(x, u) < v(x) is satisfied
for all x ∈ Θ(c). Nevertheless, determining Θ(c) becomes
impractical when attempting to identify all states x on the
continuous domain that satisfy un(x, u) < v(x). To address
this challenge, we can discretize the state space into cells
denoted as χτ , such that || x−[x]τ ||1≤ τ . In this context, [x]τ
represents the cell with the minimal distance to x. Considering
the system dynamic is Lf -Lipschitz continuous and the control
policy is Lπ-Lipschitz continuous, we can get the following
theorem [17]. The proof is discussed in Appendix III.

Theorem 2: If for all x ∈ Θ(c)
⋂
χτ and for some n ≥ 0

it holds that un(x, u) < v(x) − L∆vτ , then v(f(x, π(x))) <
v(x) holds for all x ∈ Θ(c) with probability at least (1− δ),
where L∆v = LvLf (Lπ + 1) + Lv . And Θ(c) is a region of
attraction for the dynamics f under policy π.

In this way, under a fixed policy π, the ROA can be
identified within the discretized state space as follows:

Dn = {(x, u)|un(x, π(x))− v(x) < −L∆vτ} (5)

It should be noted that the ROA is dependent on the policy.
To get the largest possible ROA, we can optimize the policy
using:

πn, cn = argmax
π∈ΠP ,c∈R>0

c, for all x ∈ Θ(c)
⋂

χτ , (x, π(x)) ∈ Dn

(6)
The ROA optimized by Eq. (6) is contained in true ROA with
probability at least (1 − δ) for all n > 0. Precisely solving
Eq. (6) is intractable, thus we adopt the ADP [18] technique
to improve the performance of the policy from data, as shown
below:

πn =argmin
πW∈ΠP

∑
x∈χτ

r(x, πW (x)) + γJπW
(µn−1(x, πW (x)))+

λ(un(x, πW (x))− v(x) + L∆vτ)
(7)

where, πW is the policy with parameters W . r(x, πW (x)) =
uTRu + xTQx ≥ 0 is the cost function. JπW

(·) is the value
function of the Bellman’s equation, which is approximated
using piecewise linear approximations [18] in this work, and
J(x) = r(x, π(x))+γJ(f(x, π(x))). µn is the mean dynamics
of the inverter represented by the GP model. Considering the
cost function is strictly positive, we use the above J(·) as the
Lyapunov function. λ is a Lagrange multiplier for the safety
constraint. In Eq. (7), the objective of the optimization is to
minimize the cost and make sure the safety constraint holds,
and stochastic gradient descent (SGD) based optimization
method can be utilized.

For the proposed MBRL based frequency regulation con-
troller, a safe initial point is essential for initiating the
learning process. Consequently, an initial policy is required,
ensuring the asymptotic stability of the system origin in Eq.
(1) within a confined set of states. In this work, we utilize
a linear–quadratic regulator (LQR) controller as our initial
policy. In addition, to expand the ROA throughout the learning
process, the agent strategically explores the state-action pairs
for which the system dynamics are most uncertain. To achieve
this, we meticulously choose measurement data points based
on:

(xn, un) = argmax
(x,u)∈Dn

[un(x, u)− ln(x, u)] (8)

where, ln(x, u) is the lower bounds of v(f(x, u)). The pro-
posed approach is summarized in Algorithm 1.

IV. SIMULATION RESULTS

A case study was conducted on a GFM inverter system,
as shown in Fig. 1, to demonstrate the effectiveness of the
proposed safe MBRL algorithm for system frequency regu-
lation. The step size of the system discrete simulation was
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Fig. 2. The developed safe MBRL strategy for GFM inverter based frequency regulation.

Algorithm 1 Safe MBRL based algorithm for GFM inverter
based frequency regulation.

1: Load the power system simulation environment; Initialize the
LQR based initial policy; Initialize the parameters of the policy
πW ; Initialize GP based dynamics model and ADP value func-
tions; Set the total number of episode Ne, and set the training
step n = 1.

2: Get the initial safe set based on the initial LQR controller and
the corresponding initial Lyapunov function;

3: for n ≤ Ne do
4: for i = 1, 2, · · · , N do
5: Based on Eq. (8), select a new safe sample of the

state-action pair (x, u).
6: Update the GP model for VSG dynamics based on the

actively selected new data point.
7: Optimize policy πn by solving Eq. (7) using the SGD method.
8: Update the Lyapunov function (i.e., value function J).
9: Using the updated policy, calculate cn in Eq. (6) to ensure

that ∀ x ∈ Θ(c)
⋂

χτ , un(x, πn(x))−v(x) < −L∆vτ holds.
10: Compute and update the safe set (i.e., ROA).
11: Return the well-trained policy πW .
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Fig. 3. The convergence of the training process for the developed safe MBRL
algorithm.

set to 0.01s and the total simulation time horizon was 15s.
We used GP model to learn the frequency dynamics of the
VSG. The mean dynamics of the VSG were characterized
by a linearized model of the true dynamics (see Eq. (A3)

Fig. 4. The ROA under the the proposed MBRL based control policy. The
dark green area denotes the safe region. The blue cross marks the data points
the agent selected to explore the safe region.

in Appendix II), accounting for inaccuracies in the values
of M and D. Consequently, the optimal policy designed for
the mean dynamics exhibited suboptimal performance with a
limited region of attraction, primarily due to underactuation
of the system. We adopted a hybrid approach employing both
linear and Matérn kernels (refer to Appendix I) [22], [26]. This
combination enabled us to effectively capture model errors
stemming from inaccuracies in parameters. As for the policy
network, the authors implemented a neural network featuring
two hidden layers, each comprising 32 neurons with Rectified
Linear Unit (ReLU) activation functions. The states θ and ω
were discretized into 2000 and 1500 intervals, respectively.
The action space was discretized into 55 intervals. The R and

Q in Eq. (3) were set to 0.1 and
[
0.1 0
0 2

]
, respectively.

The case study was conducted on an Intel Core i7-8650U
@1.90GHz Windows based computer with 16GB RAM. The
training convergence process of the developed safe MBRL
based controller for the inverter system is illustrated in Fig. 3.
The developed algorithm exhibited remarkable convergence,
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Fig. 5. The frequency control performances of the proposed safe MBRL
and the comparing methods. The frequency deviation f is derived from the
angular frequency deviation ω, with the relationship expressed as f = ω

2π
.

Consequently, in (a), (b), and (c), the values of ωt→0+ are -1 rad/s, -2 rad/s,
and -3 rad/s, respectively.

typically requiring only a few tens of iterations. Under the
developed safe MBRL based control policy, the ROA is shown
in Fig. 4. From the result, the ROA was determined based on
the information from multiple measurements. We investigated
the control performance of the safe MBRL controller, as
depicted in Fig. 5 (a)-(c). From the figures, it is evident that
when the inverter experiences frequency deviation, the safe
MBRL controller efficiently restores the system to a stable
state using BESS. In contrast, without any control, the system
became unstable after the disturbance. Additionally, while
traditional linear droop control can stabilize the system under
certain levels of disturbance, it fails to maintain stability when
the disturbance is significant (refer to Fig. 5 (c)). The results
also indicate that the linearized control policy could lead to a
rapid deterioration in control performance in the presence of
large frequency deviations.
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Fig. 6. The frequency control performances of the proposed safe MBRL and
the model-free DRL methods. In (a), (b), and (c), the values of ωt→0+ are
-1 rad/s, -2 rad/s, and -3 rad/s, respectively.

To demonstrate the superiority of the developed MBRL-
based controller over traditional model-free deep reinforce-
ment learning approaches (e.g., the Deep Deterministic Policy
Gradient (DDPG) based method outlined in [14]), we con-
ducted a comparative analysis of our method’s performance
against those employing DDPG and Soft Actor Critic (SAC)
for frequency regulation. The results are depicted in Fig. 6.
The analysis reveals that while the DDPG and SAC approaches
achieve satisfactory control performance under relatively mild
disturbances (see Fig. 6 (a)-(b)), managing to stabilize inverter
frequency within several seconds post-disturbance, their effec-
tiveness diminishes with increasing disturbance magnitude. In
contrast, the MBRL-based frequency regulation technique not
only restores inverter frequency more swiftly than the model-
free DRL strategies in scenarios with relatively minor distur-
bances but also maintains robust frequency control under more
significant disturbances (see Fig. 6 (c)). The stable control
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Fig. 7. The robustness of the safe MBRL policy against D and M uncertainties, respectively. In (a) and (b), the value of ωt→0+ is -3 rad/s.

performance of the proposed method can be largely attributed
to the integration of Lyapunov stability theory into the learning
process, which provides a safety guarantee characteristic. More
specifically, the method selects optimal control actions within
the ROA, ensuring a level of safety that model-free DRL
approaches cannot guarantee for the learned policy.

Furthermore, to test the robustness of the developed fre-
quency regulation controller against inverter parameter vari-
ations, such as M and D in Eq. (1), we evaluated the
performance of the well-trained safe MBRL controller under
different parameter settings. Fig. 7 (a) illustrates the frequency
response of the inverter with varying D values (70% ·Dbase ≤
D ≤ 130% · Dbase) while the virtual inertia setting was
held constant at Mbase. In a parallel evaluation, the frequency
response to fluctuating M values, deviating by ±30% from
the base value, was examined, all the while keeping the
damping coefficient steady at Dbase. Observations from Fig.
7 (a) and (b) indicate that the well-trained MBRL agent was
able to effectively and safely control the BESS to provide
frequency regulation, regardless of the M and D adjustments.
This adaptability underscores the controller’s capability to
handle dynamic changes and uncertainties within the system,
affirming its robustness against a wide range of operational
conditions.

V. CONCLUSION

In this letter, we presented a novel safe MBRL algorithm
for GFM inverter based frequency regulation with stability
guarantee. The proposed algorithm ensures stability by learn-
ing a Lyapunov function and utilizes ADP based reinforce-
ment learning to enhance control performance. Additionally,
a Gaussian process modeling was employed to capture VSG
dynamics and enhance robustness to parameter uncertainty.
The proposed approach offers a safe and robust controller for
GFM inverter based frequency regulation. Simulation results
demonstrated that the performance of the proposed safe MBRL
algorithm surpasses that of traditional droop controller and

model-free DRL based approaches. Moreover, the proposed
MBRL based method requires only the measurements of the
inverter’s voltage phase and angular frequency, which are
easily accessible in modern power systems. The algorithm’s
ease of implementation enhances its potential for practical
applications.

APPENDIX I
The linear kernel is given by:

kL(x, x
′) = xTx′ (A1)

The Matérn kernel is given by:

kM (x, x′) =
1

Γ(ν)2ν−1
(

√
2ν

l
d(x, x′))νKν(

√
2ν

l
d(x, x′))

(A2)
Here, l represents a length-scale parameter, d(·, ·) denotes the
Euclidean distance, Kν(·) is a modified Bessel function, and
Γ(·) is the gamma function. The parameter ν regulates the
smoothness of the function.

APPENDIX II
The initial LQR policy is designed based on the linearized

VSG dynamics. According to formulas (1) and (2), the lin-
earized small-signal model of VSG around an given operating
point is obtained as[
∆θ̇
∆ω̇

]
=

[
0 1

− 1
M (Bcosθ −Gsinθ) − D

M

] [
∆θ
∆ω

]
+

[
0

− 1
M

]
u

(A3)
The eigenvalues of the system are

λ1,2 =
−D ±

√
D2 − 4M · (Bcosθ −Gsinθ)

2M
(A4)

where, Yig = G + jB is the mutual admittance between
the IBR node and the main grid. As shown in Fig. 1, the
mutual admittance can be calculated using the line parameters
as follows [21]

Yig = − 1

Rc + jXc
=

−Rc

R2
c +X2

c

+ j
Xc

R2
c +X2

c

(A5)
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It can be found that the eigenvalues depend on the operating
point, virtual inertia and damping coefficients, and line param-
eters (i.e., Rc and Xc). In this work, Yig = −0.495 + j4.95.
The per unit values of M and D are set to 5 and 1, respectively.

APPENDIX III
Lemma 1: The control policy πW is Lipschitz continuous with
Lipschitz constant Lπ .
Proof. In this work, πW = ϕ(x). ϕ(x) is the output of a K
layer network, which is given by

ϕ(x) = ϕK(ϕK−1(· · ·ϕ1(x;W1);W2) · ··;WK) (A6)

In the hidden layers, ReLU activation functions are used.
For the kth layer, there exits a constant Lk > 0 such that
|| ϕk(x;Wk) − ϕk(x + r;Wk) ||≤ Lk || r || holds for all
x, r. The output layer utilizes tanh activation function, thus
the network satisfies || ϕ(x) − ϕ(x + r) ||≤ L || r ||, with
Lπ =

∏K
k=1 Lk.

Lemma 2: The closed-loop dynamics of the VSG given in Eq.
(4b) is Lipschitz continuous with Lipschitz constant Lf .
Proof. From the dynamics given in Eq. (1) and Lemma 1, the
dynamic function of the VSG is a continuously differentiable
function. Any continuously differentiable function is locally
Lipschitz. Therefore, the closed-loop dynamics of the VSG
given in Eq. (4b) is Lipschitz continuous with Lipschitz
constant Lf .

Lemma 3: The Lyapunov function v is Lipschitz continuous
with Lipschitz Lv .
Proof. In this work, the Lyapunov function is set as the value
function J of the ADP method. The value function is approx-
imated using a piecewise linear function that is continuous.
Given that the slopes of this piecewise linear function are
bounded, the Lyapunov function exhibits Lipschitz continuity
with a Lipschitz constant denoted by Lv .

Theorem 2 can be proofed as follows: According to Lemma
1 of [17], v(f(x, π(x)))− v(x) < 0 for all continuous states
x ∈ Θ(c) with probability higher than 1 − δ. So, Θ(c) is a
region of attraction for the system can be concluded based on
Theorem 1.

REFERENCES

[1] A. Bidram, A. Davoudi, and F. L. Lewis, “A multiobjective distributed
control framework for islanded ac microgrids,” IEEE Transactions on
Industrial Informatics, vol. 10, no. 3, pp. 1785–1798, 2014.

[2] D. Chen, K. Chen, Z. Li, T. Chu, R. Yao, F. Qiu, and K. Lin, “Powernet:
Multi-agent deep reinforcement learning for scalable powergrid control,”
IEEE Transactions on Power Systems, vol. 37, no. 2, pp. 1007–1017,
2022.

[3] Z. A. Obaid, L. M. Cipcigan, L. Abrahim, and M. T. Muhssin,
“Frequency control of future power systems: reviewing and evaluating
challenges and new control methods,” Journal of Modern Power Systems
and Clean Energy, vol. 7, no. 1, pp. 9–25, 2019.

[4] P. Verma, S. K., and B. Dwivedi, “A cooperative approach of frequency
regulation through virtual inertia control and enhancement of low
voltage ride-through in dfig-based wind farm,” Journal of Modern Power
Systems and Clean Energy, vol. 10, no. 6, pp. 1519–1530, 2022.

[5] X. Meng, J. Liu, and Z. Liu, “A generalized droop control for grid-
supporting inverter based on comparison between traditional droop
control and virtual synchronous generator control,” IEEE Transactions
on Power Electronics, vol. 34, no. 6, pp. 5416–5438, 2019.

[6] J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous
generator control for parallel inverters in microgrids,” IEEE Transactions
on Smart Grid, vol. 8, no. 5, pp. 2268–2277, 2017.

[7] K. Sakimoto, Y. Miura, and T. Ise, “Stabilization of a power system with
a distributed generator by a virtual synchronous generator function,” in
8th International Conference on Power Electronics - ECCE Asia, 2011,
pp. 1498–1505.

[8] P. He, Z. Li, H. Jin, C. Zhao, J. Fan, and X. Wu, “An adaptive vsg control
strategy of battery energy storage system for power system frequency
stability enhancement,” International Journal of Electrical Power &
Energy Systems, vol. 149, p. 109039, 2023.

[9] M. Li, W. Huang, N. Tai, L. Yang, D. Duan, and Z. Ma, “A dual-
adaptivity inertia control strategy for virtual synchronous generator,”
IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 594–604, 2019.

[10] J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual
synchronous generator with alternating moment of inertia,” IEEE journal
of Emerging and selected topics in power electronics, vol. 3, no. 2, pp.
451–458, 2014.

[11] F. Wang, L. Zhang, X. Feng, and H. Guo, “An adaptive control strategy
for virtual synchronous generator,” IEEE Transactions on Industry
Applications, vol. 54, no. 5, pp. 5124–5133, 2018.

[12] A. Ademola-Idowu and B. Zhang, “Frequency stability using mpc-based
inverter power control in low-inertia power systems,” IEEE Transactions
on Power Systems, vol. 36, no. 2, pp. 1628–1637, 2021.

[13] Z. Yan and Y. Xu, “Data-driven load frequency control for stochastic
power systems: A deep reinforcement learning method with continuous
action search,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp.
1653–1656, 2019.

[14] Y. Li, W. Gao, S. Huang, R. Wang, W. Yan, V. Gevorgian, and D. W.
Gao, “Data-driven optimal control strategy for virtual synchronous
generator via deep reinforcement learning approach,” Journal of Modern
Power Systems and Clean Energy, vol. 9, no. 4, pp. 919–929, 2021.

[15] W. Cui, Y. Jiang, and B. Zhang, “Reinforcement learning for optimal
primary frequency control: A lyapunov approach,” IEEE Transactions
on Power Systems, vol. 38, no. 2, pp. 1676–1688, 2023.

[16] W. Cui and B. Zhang, “Lyapunov-regularized reinforcement learning for
power system transient stability,” IEEE Control Systems Letters, vol. 6,
pp. 974–979, 2022.

[17] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” Advances in
neural information processing systems, vol. 30, 2017.

[18] H. Shuai, J. Fang, X. Ai, Y. Tang, J. Wen, and H. He, “Stochastic
optimization of economic dispatch for microgrid based on approximate
dynamic programming,” IEEE Transactions on Smart Grid, vol. 10,
no. 3, pp. 2440–2452, 2019.

[19] H. Shuai, J. Fang, X. Ai, J. Wen, and H. He, “Optimal real-time
operation strategy for microgrid: An adp-based stochastic nonlinear
optimization approach,” IEEE Transactions on Sustainable Energy,
vol. 10, no. 2, pp. 931–942, 2019.

[20] D. Raisz, D. Deepak, F. Ponci, and A. Monti, “Linear and uniform
swing dynamics in multimachine converter-based power systems,” In-
ternational Journal of Electrical Power & Energy Systems, vol. 125, p.
106475, 2021.

[21] V. Vittal, J. D. McCalley, P. M. Anderson, and A. Fouad, Power System
Control and Stability, 3rd Edition. John Wiley & Sons, 2019.

[22] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. Springer, 2006, vol. 1.

[23] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE, 2016, pp. 4661–4666.

[24] B. She, J. Liu, F. Qiu, H. Cui, N. Praisuwanna, J. Wang, L. M. Tolbert,
and F. Li, “Systematic controller design for inverter-based microgrids
with certified large-signal stability and domain of attraction,” IEEE
Transactions on Smart Grid, pp. 1–1, 2023.

[25] H. K. Khalil, Nonlinear Systems. Prentice Hall, 1996.
[26] D. Duvenaud, “The kernel cookbook: Advice on covariance functions,”

URL https://www. cs. toronto. edu/duvenaud/cookbook, 2014.

Hang Shuai received the B.Eng. degree from Wuhan Institute of
Technology (WIT), Wuhan, China, in 2013, and the Ph.D. degree
in Electrical Engineering from Huazhong University of Science and
Technology (HUST), Wuhan, China, in 2019. He was also a Visiting
Student Researcher with the University of Rhode Island (URI),



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XXXX 8

Kingston, RI, USA, from 2018 to 2019. He was a Postdoctoral
Researcher with the URI and University of Tennessee, Knoxville
(UTK) from 2019 to 2022. Currently, he is a Research Assistant
Professor with the UTK, Knoxville, TN, USA. His research interests
include reinforcement learning for power system, microgrid operation
and control, and bulk power system resilience.

Buxin She received the B.S.E.E and M.S.E.E degrees from Tianjin
University, China in 2017 and 2019, and the Ph.D. degree from
the University of Tennessee, Knoxville in 2023, all in electrical
engineering. He is currently a research engineer in Pacific Northwest
National Laboratory (PNNL). He served as a student guest editor
of IET-RPG. He was an outstanding reviewer of IEEE OAJPE
(2020) and MPCE (2022 and 2023). His research interests include
microgrid operation and control, machine learning in power systems,
distribution system operation and plan, and power grid resilience.

Jinning Wang received the B.S. and M.S. degrees in electrical
engi-neering from the Taiyuan University of Technology, Taiyuan,
China, in 2017 and 2020, respectively. He is currently pursuing a
Ph.D. degree in electrical engineering at the University of Tennessee,
Knoxville, TN, USA. His research interests include data mining,
scientific computation, and power system simulation. He is the author
of power system dispatch simulator, which is a key component of the
CURENT Large-scale Testbed. He has been coordinating the LTB
de-velopment efforts since 2021. He also built and maintains the list
Popular Open Source Libraries for Power System Analysis.

Fangxing Li is also known as Fran Li. He received the B.S.E.E.
and M.S.E.E. degrees from Southeast University, Nanjing, China, in
1994 and 1997, respectively, and the Ph.D. degree from Virginia
Tech, Blacksburg, VA, USA, in 2001. He is currently the John W.
Fisher Professor of electrical engineering and the Campus Director
of CURENT with the University of Tennessee, Knoxville, TN, USA.
His research interests include resilience, artificial intelligence in
power, demand response, distributed generation and microgrid, and
electricity markets. From 2020 to 2021, he was the Chair of IEEE
PES Power System Operation, Planning and Economics (PSOPE)
Committee. He has been the Chair of IEEE WG on Machine Learning
for Power Systems since 2019 and the Editor-In-Chief of IEEE OPEN
ACCESS JOURNAL OF POWER AND ENERGY (OAJPE) since
2020. Dr. Li was the recipient of numerous awards and honors,
including R&D 100 Award in 2020, IEEE PES Technical Committee
Prize Paper awards in 2019 and 2024, five best or prize paper awards
at international journals, and seven best papers/posters at international
conferences.


