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Abstract—Inverter-based resources (IBRs) introduce fast dy-
namics and high non-linearities to microgrids, degrading their
stability and complicating the design of effective controllers. To
address the arising vulnerability and non-linearities, this paper
presents a systematic controller design approach that ensures
large-signal stability and domain of attraction (DOA) for islanded
microgrids. First, the nonlinear electromagnetic transient model
of inverter-based microgrids is developed in the rotating dq ref-
erence frame, which is then transformed to a homogeneous-like
system with nonlinear terms acting as superimposed parameter
uncertainties. Next, the stability conditions, including certified
stability, certified DOA, and their combination, are derived
to rigorously guarantee a designated range to be a subset of
DOA. The designated region is customized and flexible enough
to cover microgrids’ normal or emergency operational ranges,
such as low- and high-voltage ride-through (L/HVRT) conditions.
Then, a systematic method for identifying the candidate control
parameter set is developed by integrating the analytical stability
conditions. This approach is further exemplified in the droop
controller design to improve microgrid stability and resilience.
Finally, the proposed systematic controller design is verified
through numerical simulation and power hardware-in-the-loop
experiments to ensure large-signal stability and DOA of micro-
grids in emergency L/HVRT conditions.

Index Terms—Islanded microgrid, electromagnetic transient
model, inverter-based resources, large-signal stability, domain of
attraction.

I. INTRODUCTION

THE need to transform the energy system away from its
reliance on fossil fuels to renewable energy resources

is driving the rapid development of microgrids. A microgrid
can function like a generation source in grid-connected mode
or operate as an insolated, self-sufficient system in islanded
mode [1]. Islanded microgrids are gaining more attention due
to their flexibility and capability to accommodate renewable
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energy resources, supply critical loads locally, and improve
power system resilience after extreme events [2].

Stability is one of the essential factors in optimizing micro-
grid operation or designing microgrid controllers [3]. However,
the high penetration of inverter-based resources (IBRs) can
degrade the stability of microgrids and pose challenges to
the existing operation and control framework [4]. On the
one hand, the dynamics of IBRs are much faster than those
of synchronous generators, thereby posing greater threats to
the stability of microgrids [3]. On the other hand, IBRs
are expected to be more actively involved in grid service,
i.e., switching between grid-following (GFL) mode and grid-
forming (GFM) mode, and providing auxiliary service by
adaptively changing control parameters [5]. This further ne-
cessitates a more rigorous guarantee of stability.

Research on the stability of ac microgrids is mainly cat-
egorized into local stability (small-signal stability) and tran-
sient stability (large-signal stability) [6]. Small-signal stability
analysis focuses on a sufficiently small region around an
equilibrium, which can be represented by various linearized
models such as the state space model [7], [8], transfer function
model [9], and impedance model [10]. The relevant analytical
criteria, i.e., eigenvalue [11], root locus [9], Middlebrook’s
stability criterion [12], and Nyquist criteria [13], can be
used for small-signal stability estimation and integrated into
dynamic controller design [14] or economic operation [15].

A stable equilibrium induces a region where each trajec-
tory starts and eventually converges to the equilibrium itself,
referred to as the domain of attraction (DOA). Small-signal
stability criteria, which typically rely on a linearized model,
generally cannot explicitly characterize the geometry of the
DOA. However, this information is critical in determining
the stability condition of ac microgrids when they deviate
significantly from equilibrium after a large disturbance [16].
Hence, the large-signal stability of ac microgrids has been the
subject of research.

Like small-signal stability, several criteria have been de-
veloped for determining the large-signal stability of nonlin-
ear ac microgrids, based on Lyapunov’s direct method [17],
Popov’s absolute method [18], bifurcation theory [16], singular
perturbation theory [19], and equal area method [20]. These
criteria can be used for DOA estimation. For example, Ref.
[17] estimated the DOA of islanded microgrids by enlarging
the candidate state set until the Lyapunov stability condition is
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infeasible. Ref. [21] estimated the DOA of a droop-controlled
inverter connected to an infinite bus using Takagi-Sugeno
multi-modeling. In [22], the converter is simplified as an
ideal current source controlled by a phase-locked loop (PLL).
Then, periodical DOA is obtained by transforming the certified
Lyapunov stability condition into semidefinite programming
(SDP) and solving it with the sum-of-squares programming
(SOS) method. Except for DOA estimation, these criteria have
been applied in controller design to certify transient stability.
Ref. [19] derived the sufficient frequency stability conditions
for controllers using a simplified system model that omits
network topology and voltage dynamics. The maximum active
power perturbation, the system damping, and the frequency
are bounded to a specific range so that there exists a positive
definite Lyapunov function that can guarantee stability. In [23],
the large-signal stability boundaries are derived to guarantee
the transient performance of GFL and GFM inverters. Ref.
[24] ensures the transient stability of droop-controlled inverter
networks when subject to multiple operating constraints based
on a physically meaningful Lyapunov-like function and de-
rived mathematical and computational stability criteria. Ref.
[25] designed various topology change strategies for inverter-
based microgrids while guaranteeing large-signal stability us-
ing Takagi-Sugeno fuzzy modeling.

Despite extensive research into the large-signal stability of
ac microgrids, existing works have some limitations that must
be addressed. First, a more detailed electromagnetic transient
(EMT) model is expected to be used due to the involvement of
the fast dynamics of power electronic devices. A few studies
use simplified inverter models without modeling voltage and
current regulation loops [22], [24]–[27] or reduced network
models through Kron reduction [19], [25]. Second, the detailed
modeling will be used to extend the transient analysis from a
single-inverter or parallel-inverter system [20], [28] to general
networked-inverter microgrids. Third, although some research
could estimate the DOA of nonlinear microgrids, they usually
rely on the direct inspection of stability criteria without perfor-
mance guarantees, i.e., guaranteeing stable operation in low-
and high-voltage-ride-through (L/HVRT) conditions. Fourth,
existing research on ac microgrids has derived constraints for
ensuring stability with the varying of line impedance [27]
but has not systematically designed the control modes or
control parameters to actively modify the geometry of a DOA
to contain a certain operational range. This is particularly
important for actively participating in grid services, both in
normal and emergency situations.

To bridge the gap in the existing literature, this paper
proposes a systematic controller design approach for inverter-
based microgrids to certify stability and DOA. A nonlin-
ear EMT model of droop-controlled islanded microgrids is
formulated with detailed dynamic modeling of the device-
level controller and network-side behavior. This model is then
transformed into a homogeneous-like system with nonlinear
terms as superimposed parameter uncertainties to facilitate the
analytical stability analysis. Based on the nonlinear model,
the stability criteria certifying that a given set is contained
in the system DOA is rigorously derived. Next, a systematic
approach that integrates the analytical stability conditions

is developed to identify the candidate parameter set, which
can be integrated into the existing online adaptive methods
[27] and inform the data-driven control [29]. The proposed
approach is then exemplified in droop controller design so as
to improve microgrid stability and resilience. Based on the
discussion above, the contributions of this manuscript are as
follows:

• Formulation of an EMT model and a homogeneous-like
model of inverter-based microgrids that facilitates analytical
stability analysis and controller design.

• Derivation of criteria that certify large-signal stability and
a designated DOA of microgrids based on the formulated full-
scaled model.

• Development of a systematic control design approach
that integrates the derived stability conditions, and validation
through numerical and power hardware-in-the-loop (HIL) ex-
periments.

The rest of this paper is organized as follows. Section
II introduces the EMT model of inverter-based islanded mi-
crogrids. Section III derives the analytical criteria that can
certify stability and DOA, which are then integrated into
the systematic controller design. The droop controller design
exemplifies the systematic approach to ensure stability and
DOA. In Section IV, a single inverter system and a modified
Banshee microgrid are used to verify the proposed method.
Finally, Section V concludes this paper and discusses future
research directions.

II. ELECTROMAGNETIC TRANSIENT MODEL OF
INVERTER-BASED MICROGRIDS

This section presents the EMT model of inverter-based
microgrids in a rotating dq reference frame, which is then
transformed into a homogeneous-like system to facilitate the
analytical stability analysis.

A. Component Modeling

Fig. 1 shows the grid components of an inverter-based
islanded microgrid, including GFM inverters, connection lines,
buses, and loads [17]. The dynamics of each component can be
described by a general model given in (1). Then, the modeling
of each component may be combined to create a unified model
of the microgrid.{

ẋc = Ac (xc)xc +Bcuc

yc = C (xc)xc
(1)

where xc is the component state variable; yc is the component
output variable, and uc is the component input variable. Each
variable is further categorized based on the grid component it
represents. For example, xc could specifically refer to inverter
states denoted as xinv , load states denoted as xr, line states
denoted as xl, or bus states denoted as xb. Eq. (1) is a nonlinear
model with the state variable embedded in the state matrix Ac.

All the grid components are modeled under the rotating
reference frame. Specifically, each inverter is regulated at
the local rotating dq reference frame, and one of the local
references serves as the global rotating DQ reference frame for
the rest of the grid components. Then, the variables observed
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Fig. 1. Diagram of inverter-based microgrid components: (a) droop-controlled GFM inverter; (b) load; (c) line; (d) bus.

from the local dq reference frame are transferred to global DQ
reference frame [25]:

xcDQ = TSxcdq =

[
cos θi − sin θi
sin θi cos θi

]
xcdq (2)

where xcDQ = [xcD(t), xcQ(t)] and xcdq = [xcd(t), xcq(t)]
are the state vectors observed on the DQ/dq-axis from the
global and local reference frame, respectively, and θ is the
angle mismatch between the two references.

1) GMF inverter: Fig. 1(a) shows the diagram of a GFM
inverter, which consists of a current regulator, a voltage reg-
ulator, and a primary regulator, each with several parameters
that need elaborate design. The mathematical modeling [17],
[25], [30] is detailed in (3)-(8).

• Power angle
θ̇ = ωref − ωDQ (3)

• Droop equation{
vdref = Vn + kdv (Qn −Qm)
wref = wn + kdf (Pn − Pm)

(4)

• Low pass filter {
Pm = GP

1+sTP
P

Qm =
GQ

1+sTQ
Q

(5)

• Power stage loop{
P = vdibd + vqibq
Q = vdibq − vq i̇bd

(6)

• Current regulation loop{
idref =

(
kpid +

kiid

s

)
(vdref − vd)− wnCfvq + ibd

iqref =
(
kpiq +

kiiq

s

)
(vqref − vq) + wnCfvd + ibq

(7)
• Voltage regulation loop{

ed =
(
kpvd +

kivd

s

)
(idref − id)− wnLf iq + vd

eq =
(
kpvq +

kivq

s

)
(iqref − iq) + wnLf id + vq

(8)

Then, a full-scaled 13th order state space
model is obtained by introducing internal variables
in (9). The nonlinear state space model has
xinv = [θ, φvd, φvq, φid, φiq, vd, vq, id, iq, Pm, Qm, ibd,

ibq]
T as the state variable, bus voltage uinv = [vbD, vbQ]

T as
the input, and filter current yinv = [ibD, ibQ]

T as the output.
φid = kiid

s (idref − id)

φiq =
kiiq

s (iqref − iq)

φvd = kivd

s (vdref − vd)

φvq =
kivq

s (vqref − vq)

(9)

The full-scaled inverter model brings non-linearities to
microgrids, which are reflected in (2) and (6). Eq. (2) contains
the sines and cosines functions, which are further multiplied
by state variables, and (6) contains the product of two state
variables.

Papers [21], [25] show that reduced-order inverter modeling
can cause conservatism when estimating the DOA of inverter-
based systems. Utilizing the full-scaled inverter model in
this paper improves modeling accuracy, thus avoiding the
conservatism of analytical stability estimation resulting from
model reduction. In addition, the stability of microgrids is
fundamentally determined by a set of control parameters such
as droop gains, proportional integral gains, and filter induc-
tance, all of which require careful design. By grouping these
parameters into a vector K, this paper focuses on designing
K to ensure both large-signal stability and DOA certification.

2) Network component: The network components operate
in the global rotating DQ reference frame. Figs. 1(b)-(d) show
the diagram of a constant RL load, a π connection line,
and a general bus. Considering that each line is connected
to two independent buses, its capacitors are integrated into
the connected bus to reduce the number of state variables
and thus simplify the modeling. By implementing Kirchhoffs
Circuit Law and performing Park Transformation, network
components have distinct state variables, input variables, and
output variables as follows:
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(i). Load: xr = [irD, irQ]
T , ur = [vbD, vbQ]

T , and yr =

[irD, irQ]
T ;

(ii). Line: xl = [ilD, ilQ]
T , ul = [vbD1, vbQ1, vbD2, vbQ2]

T ,
and yl = [ilD, ilQ]

T ;
(iii). Bus: xb = [vbD, ibQ]

T , ub =

[ibD1, ibQ1, ibD2, ibQ2 · · · ]T , and yb = [vbD, vbQ]
T .

The detailed expressions for each model can be found in
[17], [25], [31], where the accuracy of these models has
been demonstrated to be sufficient for stability analysis. Other
control structures, such as distributed voltage and frequency
control, can be integrated into the modeling framework and
expressed in state-space form [32]. These component models,
once formulated, serve as the basis for constructing a unified
microgrid model that incorporates the nonlinearities of each
component and the interconnections between grid components.

B. Unified Microgrid Modeling

Fig. 2. Unification of microgrid components.

Assuming a reference inverter that provides the global rotat-
ing DQ reference frame for all the microgrid components, the
remaining inverters are referred to as the following inverters in
this paper. As visualized in Fig. 2, the unified microgrid model
is formulated by coupling the grid components [17], [25]. By
plugging the output of grid components into the state space
model of the corresponding coupling components, the unified
model is obtained in (10).

ẋ = Ax =


Ainv 0 0 Ainv−b

Ar−inv Ar 0 Ar−b

Al−inv 0 Al Al−b

Ab−inv Ab−r Ab−l Ab

x (10)

where A is the state matrix of the unified model, and Ainv , Ar,
Al, and Ab are the united state matrix of inverters, load, lines,
and bus, respectively. The off-diagonal matrices represent the
coupling between grid components, which matches the data
flow shown in Fig. 2. The diagonal elements do not have any
inner coupling, except for Ainv . Denote the state matrix of the

reference inverter as Ainv,ref , and the following inverters are
numbered from 1 to j. Then, (11) details Ainv .

Ainv =


Ainv,ref 0 0 0

Ainv,ref−1 Ainv,1 0 0
... 0

. . . 0
Ainv,ref−j 0 0 Ainv,j

 (11)

where Ainv,j is the state matrix of the jth following inverter
and Ainv,ref−j is the coupling between the reference inverter
and the jth following inverter. The reference inverter couples
with the following inverters via wDQ, as visualized in Fig. 2.

In summary, component unification eliminates the input and
output variables of each component modeling and makes the
microgrid a unified system. Then, matrix A with embedding
K can be used for analytical stability analysis and controller
design.

C. Homogeneous-Like System

To better track the nonlinear dynamics of (10), it is changed
into a homogeneous-like system through a coordinate transfor-
mation [33]. Assume an equilibrium xe exists and define the
state deviation from the equilibrium as ∆x ≜ x−xe. Plug ∆x
and xe into (10), then (10) is transformed into a homogeneous-
like form while preserving the nonlinearities. The stability of
the transformed system is the same as the original system [33],
but it is more suitable for analytical stability analysis.

∆ẋ = Â(∆x,K, xe)∆x = Â(h)∆x (12)

where h = h(∆x,K, xe) is the nonlinear terms in Â. Note
that in inverter-based microgrids, the system parameters may
experience changes due to the degradation of crucial com-
ponents like power switches and capacitors. These variations
can impact the RLC parameters in (11), but they can also be
incorporated into h for stability analysis. Then, (12) represents
a homogeneous linear parameter varying (LPV) system with
h as a superimposed parameter uncertainty. The stability of an
LPV system could be guaranteed by bounding h to a specific
range, which is fundamental to the systematic controller design
in Section III.

III. SYSTEMATIC CONTROLLER DESIGN WITH CERTIFIED
STABILITY AND DOMAIN OF ATTRACTION

This section derives the analytical criteria that can certify
stability and DOA and integrates them into microgrid con-
troller design.

A. Foundamentals of the systematic design

1) Concept of certified stability and DOA: DOA is a set that
contains an equilibrium and lies in the state space such that
each trajectory that enters it will remain inside and eventually
converge to the equilibrium [20].

A microgrid is stable for sure if the system state is initialized
within its DOA whether in normal or emergency conditions.
IEEE standard [34] and some institution guidelines define a
few important operational requirements for microgrids, i.e.,
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the 1% frequency deviation limit and 7% voltage deviation
limit after normal disturbances, and L/HVRT capability when
there is 40% voltage deviation under emergency conditions
[35]. These requirements define a critical set for microgrids,
which is desired to be a subset of the DOA and can be referred
to as the “designated DOA” [36]. This concept is shown in
Definition 1 and Eq. (13).

Definition 1. A microgrid governed by (12) is called stable
with a guaranteed DOA if ∆X o is a subset of the system DOA.

{
∆X o ≜ {∆x ∈ Rn : ∆x ∈ [∆x̄−,∆x̄+]}
∆X o ⊂ DOA

(13)

where ∆x̄− and ∆x̄+ are the upper and lower bound of state
variable deviation, which is customized and defined according
to IEEE standards or institution requirements.

2) Objective of the controller design: Matrix Â is com-
posed of xe, ∆x, and K, all together fundamentally de-
termining whether or not a microgrid meets (13). If the
designated DOA contains any operation point outside the
actual DOA, microgrids may encounter unexpected stability
issues [36]. Hence, this paper aims to systematically design
K, the candidate set of K, such that any element of K makes
(12) stable with a guaranteed DOA.

B. Analytical certified stability and DOA

This subsection derives the analytical conditions that certify
stability, DOA, and their combination, with the assumption
that K remains constant throughout.

1) Certified stability: Given the homogeneous-like system
(12), there is a quadratic Lyapunov function V (∆x(t)) ≜
∆x(t)⊤P∆x(t) that can certify stability, where P ≻ 0 is a
positive definite matrix.

Since Â is bounded internally by h, define H as the com-
plete set of h that can guarantee the homogeneous-like system
(12) stable. H is a convex hull according to [37]. Although H
is difficult to represent explicitly, it is possible to find a subset
H′ by introducing a base vector and a scaling factor. Denote
the subset as H′ ≜

{
h : h ∈

[
βho

−, βh
o
+

]}
⊆ H, where ho

−
and ho

+ are guessed base vectors of the convex hull. Then, the
stability condition is formulated in (14) by maximizing the
scaling factor while satisfying the Lyapunov stability criteria.

Certified stability: max
P≻0,β>0

β

s.t. ÂTP + PÂ ≤ −I, P > I
(14)

Eq. (14) induces Lemma 1, which is then integrated into
the controller design process. It determines a subset of H
and a common quadratic Lyapunov function that renders the
nonlinear system (12) Hurwitz stable.

Lemma 1. For given ho
− ≤ 0 and ho

+ > 0, if β and P
are the solution of semi-definite programming (14), V (∆x) =
∆x⊤P∆x is a common quadratic Lyapunov function for (12)
with V̇ (∆x) < 0 for h ∈ [βho

−, βh
o
+].

2) Certified DOA: This condition aims to find a minimum
sub-level set of DOA that covers ∆X o. Assume an open set
D ⊂ Rn contains the equilibrium point xe and a continuous,
differentiable Lyapunov function V : D → R, then (15)
certified a subset of DOA and (16) further describes a positive
invariant domain in a DOA [22].

V (0) = 0
V (∆x) > 0,∀x ∈ D\{0}
V̇ (∆x) = ∇V ∆̇x ≤ 0,∀∆x ∈ D\{0}

(15)

S = {∆x ∈ Rn | V (∆x) ≤ α} with S ⊂ DOA (16)

Since P ≻ 0 and quadratic V have been obtained in (14),
it is trivial to find the invariant sub-domain defined by (16):
S(P, α) =

{
∆x : ∆x⊤P∆x ≤ α

}
. Then, multi-linear matrix

inequalities (LMIs) are formulated in (17) to certify ∆X o ⊂
S(P, α), which finally ensures ∆X o ⊂ S(P, α) ⊂ DOA and
induces Lemma 2.

Certifed DOA: min
α>0

α

s.t. (∆X o
k )

⊤
P∆X o

k ≤ α, k = 1, · · · ,m
(17)

where ∆X o
k is the kth vertex of ∆X o and m is the number

of vertices.
Through the minimization of α, (17) identifies the minimum

sub-level set of DOA that covers ∆X o. While this process
typically involves multiple LMIs, the symmetrical property
of ∆X o can be leveraged to transform into a single LMI to
reduce the computational burden. In (17), each P will certify
an ellipse sub-level set of DOA, which needs to cover the
expected range ∆X o. To achieve this, a minimum-volume
symmetric ellipsoid covering ∆X o can first be found, followed
by the identification of a sub-level set that contains the
symmetric ellipsoid. Remarkably, each of these steps requires
only a single LMI [38], significantly improving computational
efficiency.

Lemma 2. For given β > 0 and P ≻ 0 as the
solution of (14) and α as the solution of (17), S(P, α) ={
∆x : ∆x⊤P∆x ≤ α

}
is the minimum ellipsoid set that

covers ∆X o
k .

3) Combined stability and DOA: The stability condition in
(14) and the certified DOA (17) could be combined as a unified
condition in (18) with the following logic:

· Eq. (18–1) guarantees ∆X o ⊂ S(γ, 1), where S(γ, 1) ≜{
∆x : ∆x⊤[γ]∆x ≤ 1

}
;

· Eq. (18–2) guarantees S(γ, 1) ⊂ S(P, 1);
· Eq. (18–3) combined with constraint P ≻ 0 is like (14),

rendering the nonlinear system (12) Hurwitz stable.

Co-Stability-DOA: max
P≻0,γ>0

det rootn(P )

s.t.

 (∆X o
k )

⊤
[γ]∆X o

k ≤ 1 (18− 1)
P ⪯ [γ] (18− 2)

ÂTP + PÂ ≺ 0 (18− 3)

(18)

Then, (18) minimizes the volume of S(P, 1) and certifies
stability and DOA as ∆X o ⊂ S(γ, 1) ⊂ S(P, 1) ⊂ DOA.
Fig. 3 visualized the set-covering relationship, which further
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induces Lemma 3. Note that β is a decision variable in (18),
which can be found through the line-search method to make
(18) and the set-covering feasible.

Lemma 3. For given β > 0, γ ≻ 0 and P ≻ 0 as
the solution of (18), S(γ, 1) =

{
∆x : ∆x⊤P∆x ≤ α

}
is the

minimum symmetric ellipsoid set that covers X o
k , which is also

the subset of DOA .

Fig. 3. Visualized set-covering relationship.

C. Systematic controller design

1) Mathematical formulation: Sub-section III-B derives the
analytical condition that makes (13) feasible, assuming K
as constant parameters. The systematic design changes K to
decision variables and embeds the derived stability condition,
as formulated in (19).

Candidate-set: K

s.t.
{

P ≻ 0, β > 0, α > 0, γ > 0
(14),(17) or (18)

(19)

Where K is the set of K subject to the constraints in (19).
Either the separate stability conditions (14) and (17), or

the combined stability (18), can be included in the systematic
design. For the separate conditions, K first impacts the range
of the superimposed parameter uncertainty h that makes (14)
feasible and then determines whether or not (17) is feasible to
have an ellipsoid set covering X o. For the combined condition,
K directly impact P solved by (18-3) since K is included in Â,
which further determines whether or not S(P, 1) (red ellipse in
Fig. 3) has a sub-set S(γ, 1) (blue ellipse in Fig. 3) to cover
X o. Hence, (19) groups the inner coupling between control
parameter, equilibrium, and state deviations and defines a
candidate parameter set that certifies stability and designated
DOA, which further induces Lemma 4.

Lemma 4. If K defined by (19) isn’t an empty set, any
K ∈ K ensures stability with a certified DOA for system (10).

Note the proposed method is applicable to transmission or
other dynamic systems represented by ordinary differential
equations. New parameters can be seamlessly incorporated
vector K for systematic design and stability guarantee.

2) Practical design: Although (19) rigorously defines a
candidate set that certified stability and DOA, it is challenging
to find the exact set or derive the explicit expressions for K.
This also makes analytical sensitivity analysis difficult. As a
result, a practical design approach is further proposed to find
a sub-set of K.

Assume a base vector K0 and a scaling factor λ. Through
a line-search method, it is trivial to find a subset K′ ≜ λK0

where λ ∈ [λ−, λ+], and λ− and λ+ are the minimum and
maximum λ making (19) feasible. The detailed progress is
shown in Algorithm 1.

Algorithm 1 Identify candidate parameter set to make system
(10) stable with a guaranteed DOA

Input: state space matrices: Â; constraints set: X e; target
parameter vector: K, designated DOA: ∆X o; initial guess:
ho
−, ho

+, β, K0, and λ0; and searching interval ∆λ.
Output: Candidate control parameter set: K′.
Step 1: Identify upper boundary of K′.

Assume K = (1+ k∆λ)K0; obtain subset H′ and the
minimum subset of DOA by solving (18); increase k to kup
until (18) is infeasible; then, λ+ = 1 + kup∆λ.
Step 2: Identify lower boundary of K′.

Assume K = (1− k∆λ)K0; obtain subset H′ and the
minimum subset of DOA by solving (18); decrease k to
kdown until (18) is infeasible; then, λ− = 1− kdown∆λ.
Step 3: Obtain K′.

K′ ← {K ∈ Rn | K = λK0, λ− ≤ λ ≤ λ+}.

Note that it is unnecessary to include all control parameters
in K, but rather to choose any combination of target parame-
ters with less confidence. Furthermore, such a design is flexible
since the designated DOA can be customized to include the
normal and emergency operational ranges, such as L/HVRT
requirements.

The practical design does not directly formulate the control
law for microgrids. Instead, it takes a systematic approach to
determine the subset of secure candidate control parameters.
By utilizing the feasible candidate set obtained, it is conve-
nient to incorporate it into any controller design, including
adaptive control, optimal control, or data-driven control that
involves online parameter updates. This method allows for the
systematic design of microgrid controllers to ensure stability
with a designated DOA, which is particularly crucial for
power grids that are penetrated by IBRs or DERs and at
risk of instability. In addition, simulation-based sensitivity
analysis can be conducted by introducing uncertainties to
critical parameters. In the following, the practical design is
exemplified by droop-controlled GFM inverters.

D. Exemplify in droop controller design

A droop controller for IBRs is designed to emulate the
behavior of conventional synchronous generators and auto-
matically share the load among generations. Due to its rapid
response and crucial power-sharing functionality, the droop
gain tuning results fundamentally determine the microgrid’s
stability [39].
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Eq. (20) represents a candidate set of droop gains for
microgrid GMF inverters to ensure stability and DOA. Then,
Algorithm 1 can be utilized to obtain a subset K′ bounded by
λ− and λ+.

Candidate-droop-gain: K

s.t.

 P ≻ 0, β > 0, α > 0, γ > 0
K = λ[kdv,1, kdf,1, · · · , kdv,i, kdf,i, · · · ]
(14),(17) or (18)

(20)

Where kdv,i and kdf,i are the voltage droop gain and frequency
droop gain of the ith inverter, respectively.

IV. CASE STUDIES

This section demonstrates the proposed method in a single
inverter system and a modified real-world microgrid. The
numerical simulation environment is equipped with an Intel(R)
Core i7-8665U CPU running at 2.10 GHz, 16 GB of memory,
and a MATLAB R2020a simulation platform. Algorithm 1 is
executed using CVX and MOSEK, while the dynamic per-
formance of microgrids with the systematic design is verified
using the MATLAB ode45 solver.

A. Single-inverter system

1) Systematic droop controller design: Assume a single
droop-controlled GFM inverter connected to an infinite bus,
as shown in Fig. 1, and find the candidate droop gain set
that can certify stability and DOA under L/HVRT conditions
with the proposed systematic approach. Table. I shows the key
parameters of the single-inverter system.

TABLE I. Parameters of single-inverter system

Item Value Item value Item Value

Lf1 (p.u.) 5.25× 10−6 kdv0 0.05 kdf0 0.01
Cf (p.u.) 1.9× 10−4 kpvd 0.05 kivd 0.5
Lf2 (p.u.) 5.25× 10−4 kpvq 0.05 kivq 0.5

TfP 0.004 kpid 0.5 kiid 5
TfQ 0.004 kpiq 0.5 kiiq 5

According to IEEE Standard 1547-2018 [40], IBRs must
be able to ride through short-duration voltage disturbances.
The required voltage for L/HVRT is not a fixed value and
depends on the specific requirements of the power system and
the technical capabilities of the IBRs. This paper chooses 40%
voltage deviation (vb droops as low as 0.6 p.u. and increases
as high as 1.4 p.u.) as the L/HVRT operational boundary.

Then, Fig. (4) visualizes the systematic design results
with the implementation of Algorithm 1, where λ− and
λ+ are solved as 0.036 and 1.828, respectively. Then,
the candidate droop gain set is obtained as K′ ={
K ∈ R2 | K = λ[kdv0, kdf0], 0.036 ≤ λ ≤ 1.828

}
. Based on

Lemma 4, for ∀[kdv, kdf ] ∈ K′, the single inverter system
is stable with guaranteed DOA covering L/HVRT operational
range.

Fig. 4. Visualized systematic droop controller design results
for single inverter system.

2) Numerical Verification: To ensure design correctness,
randomly sample droop gains from set K′. They are tested
through time domain simulation (TDS) in Matlab using an
ode45 solver with a relative tolerance of 5 × 10−6 and an
absolute tolerance of 5 × 10−5. The control performance is
assessed by perturbing the state variables from equilibrium
and observing their transient trajectories. This is a common
way to evaluate the performance of the state space model in
the control theory and power system [41], [42].

TDS results show that all state variables converge to equilib-
rium with randomly sampled droop gains in K′. For instance,
Fig. 5a shows the transient trajectories of the single-inverter
system when initialized from the L/HVRT boundary with
λ = 1 ∈ K′ and [kdv, kdf ] = [0.0525, 0.015]. The system
stabilizes with all state variables converging to equilibrium
at around 0.15 seconds. Conversely, if λ = 2.5 /∈ K′ and
[kdv, kdf ] = [0.125, 0.025], the system is demonstrated to
diverge when initialized from the L/HVRT boundary, and the
corresponding transient trajectories are displayed in Fig. 5b.

3) Comparison: This paper proposes a new controller
design approach that utilizes a full-scaled homogeneous-like
EMT model. It ensures stability and designated DOA flexibly.
A comparison study is conducted to highlight the advantages
of this approach. The comparison involves implementing the
proposed systematic approach in controller design using a sim-
plified IBR model [21]. The study also tries a DOA estimation
method [22] for controller design but finds the estimated DOA
may fail to cover the L/HVRT range as desired.

Using a simplified IBR model and Algorithm 1, λ−
and λ+ are solved as 0.50 and 1.78 in Fig. 6, respec-
tively. Then, the candidate droop gain set yields K′ =
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(a)

(b)

Fig. 5. Transient trajectories of single-inverter system: (a)
[kdv, kdf ] = [0.0525, 0.015], (b) [kdv, kdf ] = [0.125, 0.025].

{
K ∈ R2 | K = λ[kdv0, kdf0], 0.50 ≤ λ ≤ 1.78

}
, which is

smaller than the set obtained based on full-scale model. Such
conservativeness resulting from model reduction aligns with
the observations in [21].

If solely relying on the DOA estimation method [22] for
stability analysis without systematic design, the estimated
DOA is

{
∆x ∈ R13 | −1.02xe ≤ ∆x ≤ 0.26xe

}
with a given

λ = 2. The estimated DOA does not encompass the L/HVRT
boundary, potentially jeopardizing system stability. Engineers
may need to use additional methods like the sensitivity-based
approach [43] to ensure stability. In contrast, the systematic
design ensures a feasible range of λ for set-covering, alleviat-
ing the need for engineers to engage in extra parameter tuning
for stability guarantee.

4) Discussion: Not all droop gains outside K′ will lead to
instability. This is because the quadratic Lyapunov function
represents a sufficient condition for transient stability, and
(15)-(16) only quantifies a subset of the actual DOA. Fur-
thermore, the proposed approach focuses on ensuring that the

Fig. 6. Visualized systematic droop controller design results
for single inverter system based on simplified IBR model.

designated operational range is a subset of the actual DOA.
The control objective does not include transient performance,
which may vary as control parameters change within the feasi-
ble region obtained. However, transient performance could be
a design objective, as discussed in [44], [45]. This systematic
design can complement those methods to guarantee stability.

The proposed method can also include fault recovery capa-
bility design by incorporating the initial post-fault state in the
designated DOA. The state can be determined by considering
different types of faults and a defined time threshold for fault
clearing. If the initial post-fault state falls within the designated
DOA, the microgrid can recover from faults without any
stability concerns when equipped with the designed controller.

B. Modified Banshee Microgrid

This subsection further verifies the proposed method in the
modified Banshee microgrid.

1) System configuration: As shown in Fig. 7, the microgrid
used for testing is a modification of the Banshee distribution
system [46], [47]. The modification involves keeping feeder 1
and integrating renewable energy and energy storage devices,
resulting in a self-sufficient system that operates in islanded
mode with switch 100 off. Three GFM inverters are connected
to Bus 105, Bus 103, and Bus 102, each with distinct rated
capacities of 1500 kVA, 3000 kVA, and 4500 kVA. These
rated capacities serve as a reference for initiating the droop
gain vector.

2) Systematic droop controller design: The objective
is to find the droop gain set that can ensure stabil-
ity and DOA under L/HVRT conditions, similar to the
single-inverter system design. Therefore, assume K =
[kdv,1, kdf,1, kdv,2, kdf2, kdv,3, kdf,3].
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Fig. 7. Single-line diagram of modified Banshee microgrid
[46].

Engineering practice typically tunes droop gains of GFM
inverters in proportion to their rated capacity to share
microgrid loads. Specifically, kdv,1 : kdv,2 : kdv,3 =
kdf,1 : kdf,2 : kdf,3 = S1 : S2 : S3. Assume
K0 = [0.017, 0.0033, 0.035, 0.0067, 0.05, 0.01], then λ− and
λ+ are solved as 0.028 and 1.513 based on Algorithm 1,
and the candidate droop gain set is obtained as K′ ={
K ∈ R6 | K = λK0, 0.028 ≤ λ ≤ 1.513

}
.

3) Numerical Verification: The dynamic performance of
inverters under the systematic design is verified by randomly
sampling droop gain vectors from K′. Results show that all
state variables can converge to equilibrium. For instance, with
λ = 1 and K = [0.017, 0.0033, 0.035, 0.0067, 0.05, 0.01],
the three-dimensional voltage trajectories of the three GMF
inverters are shown in Fig. 8 when initialized from the varying
L/HVRT boundary. Eight initial points starting from the cube’s
vertices converge to equilibrium. The transient trajectories
of some other key state variables are further shown in Fig.
9 when initialized from [vd1, vd2, vd3] = [0.6, 0.6, 0.6]. All
state variables converge around 0.15 s, indicating the correct
methodology. However, the state variables diverge if λ is set
to 2, as depicted in Fig. 10.

4) Comparison: Referring to the comparison conducted
in the single inverter system, the candidate droop gain
set of the modified Banshee microgrid is obtained as
K′ =

{
K ∈ R6 | K = λK0, 0.48 ≤ λ ≤ 1.47

}
using a sim-

plified IBR model. The design results are more conserva-
tive than those obtained from the full-scale EMT model. If
solely relying on the DOA estimation method for stability
analysis without systematic design, the estimated DOA is{
∆x ∈ R13 | −0.98xe ≤ ∆x ≤ 0.12xe

}
given λ = 1.4. Such

a design can potentially lead to operational risks because the
estimated DOA fails to cover the L/HVRT range, necessitating
extensive parameter tuning to ensure stability. These adjust-
ments are known to be time-intensive, thus highlighting the

Fig. 8. Three-dimensional voltage trajectories with varying
initial conditions.

superiority of the proposed method.

C. Power HIL Verification for the modified Banshee microgrid
controller design

The systematic controller design for the modified Banshee
microgrid is further demonstrated through power HIL exper-
iments. A hardware test-bed (HTB) platform is developed by
the Center for Ultrawide Area Resilient Electric Transmission
Networks (CURENT) at the University of Tennessee [48],
[49]. This platform allows for replicating power grids by pro-
gramming IBRs to mimic grid components. Fig. 11 shows the
diagram of HTB, where Fig. 11a shows the hardware system
overview and Fig. 11b shows the communication structure.
The connection line is created using actual inductance, which
also includes the transformer’s impedance. The rest of the
components in Fig. 7 are all emulated by IBRs. For a more
comprehensive understanding of the measurement, control,
and communication architecture, please refer to Section III
in [48].

Referring to the numerical verification, droop gains are ran-
domly sampled from the obtained candidate set and tested in
HTB under LVRT conditions. Due to the capability constraints
of HTB and its built-in protection schemes, it is difficult
to emulate LVRT conditions for all three inverters at the
same time. Therefore, only inverter 1 is subjected to LVRT
conditions by injecting a large external inductive reactive
power into BUS 106.

The power HIL test results are shown in Fig. 12. Fig. 12a
depicts IBRs with droop gains assigned at λ = λ−, where the
terminal voltage of inverter 1 drops to the LVRT boundary
around 1.7 s due to inductive reactive power injection. The
voltage recovers to the nominal value after the disturbance
is cleared around 2.2 s. During the disturbance, the system
frequency experiences mild deviations. Similarly, Fig. 12a
displays the system voltage and frequency when IBRs are
assigned droop gains with λ = λ+. Even with a voltage
droop that reaches the LVRT boundary, inverter 1 can continue
operating until the disturbance is resolved. Beyond the results
displayed in Fig. 12, a few other gains are randomly selected
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(a)

(b)

(c)

Fig. 9. Transient trajectories of Banshee microgrid (partial)
with λ = 1: (a) Angle frequency; (b) Power output of inverter;
(c) Grid line current.

and tested. The system consistently returns to its original
equilibrium point after disturbances, proving the effectiveness
of the formulated homogeneous-like EMT model and the
systematic controller design approach.

In summary, the proposed method can ensure the stability
of the modified Banshee microgrid. Based on Lemma 4, K′

rigorously guarantees stability and designated DOA. With the
design results in mind, some adaptive algorithms that update
the droop gains online can work safely and reliably under
L/HVRT conditions. This is extremely significant since IBRs
are expected to actively provide grid support and enhance

(a)

(b)

(c)

Fig. 10. Transient trajectories of Banshee microgrid (partial)
with λ = 2: (a) Angle frequency; (b) Power output of inverter;
(c) Grid line current.

microgrid resilience in the event of natural and man-made
hazards that could jeopardize the system.

V. CONCLUSION

This paper proposes a systematic approach for inverter-
based microgrids to certify stability and a designated DOA.
A nonlinear EMT model is developed to accurately cap-
ture the fast dynamics of grid components, which is then
transformed into a homogeneous-like system to facilitate the
analytical stability derivation. The nonlinear terms are treated
as superimposed parameter uncertainties and bounded within
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(a)

(b)

Fig. 11. Diagram of HTB: (a) hardware system overview; (b)
communication structure.

a specific range to derive the stability criteria. Utilizing the
stability criteria, a systematic controller design approach is
further developed to identify the candidate control parameter
set that ensures stability and DOA whenever in normal or
emergency conditions. The proposed methodology shows great
flexibility and can be integrated into some adaptive approaches
and physic-informed data-driven approaches for stability and
performance guarantee. In the future, detailed integration
strategies will be investigated to harness the full potential of
the proposed systematic approach.
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