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Abstract—The resilient responses of networked microgrids
(MGs) can greatly improve the survival of critical loads during
extreme events. In order to efficiently handle the scarce data issue
as well as improve the adaptability of deep reinforcement learning
(DRL) methods for complex sequential extreme events (SEEs)
such as hurricanes and tornadoes, a new learning-based method
is proposed for the survival of critical loads in MGs during SEEs.
A generative adversarial network (GAN) is applied to generate
a sufficient extreme event-related database in a model-free way.
Specifically, a self-attention GAN (SA-GAN) is developed to cap-
ture sequential features of the SEE process. Then, the SA-GAN is
integrated into a DRL framework, and the corresponding Markov
decision process (MDP) and the environment are designed to realize
adaptive networked MG reconfiguration for the survival of critical
loads. Faced with uncertain distributed generator (DG) output
and sequential line damage, the SA-GAN-DRL method provides
an adaptive model-free solution to continuously supply critical
loads during SEEs. The effectiveness of the proposed method is
validated using a 7-bus test system and the IEEE 123-bus system,
and the results demonstrate both a strong learning ability with
limited practice data, and robustness and adaptability for highly
changeable SEE processes.

Index Terms—Self-attention, deep reinforcement learning
(DRL), microgrids (MGs), distributed generator (DG), generative
adversarial network (GAN).

I. INTRODUCTION

THE extensive damage and subsequent outages within
power systems caused by high-impact and low-probability

extreme events indicate the necessity of enhancing power system
resilience [1], [2]. Networked microgrids (MGs) or multiple
MGs, core components in a distributed system, are essential
for enhancing the operational flexibility and efficiency of the
distributed system (DS), and they offer promising solutions for
power grids to withstand unplanned catastrophic events [3].
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The networked MGs are self-supported MGs with the ability to
provide supports to each other via reconfigurations. With their
distributed but coordinated feature, they reduce the impact of
cascading events and enhance the survival of smart grid critical
loads. A DS with distributed energy resources (DERs) or dis-
tributed generators (DGs) can transform into a networked MG in
preparation for extreme events [4]. Networked MGs can benefit
from the survival of critical loads based on strategic management
of local DGs as well as mutual assistance among MGs [5], [6].
Finally, networked MGs help achieve bottom-up restoration by
supplying available local power sources for system restoration
[7]. This paper focuses on the flexible reconfiguration of net-
worked MGs as a resilient defense strategy during sequential
extreme events (SEEs).

SEEs, e.g., hurricanes and tornadoes, pass through an area se-
quentially and regionally [8], and consequently lead to on-going
damage to power grid infrastructures such as generators and
lines. Due to the changing environment, resilient defenses for
SEEs are highly related to system conditions. Faced with subse-
quent damages, ref. [5] enhanced the survival of critical loads by
minimizing MG scales and allowing both radial and looped MG
networks. Ref. [9] provided a stochastic programming model
to re-configure networked MGs with the goal of maximizing
continuous load supply according to occurred fault conditions.
Refs. [8] and [10] took the hurricane track as a Markov decision
process (MDP), integrated it into energy dispatching models,
and then applied stochastic and robust optimization methods to
provide solutions, respectively. A multi-stage and multi-zone-
based uncertainty set was designed for a SEE process in [11],
and two-stage robust optimization was applied to minimize load
shedding under extreme events.

Mathematical model-based methods use stochastic program-
ming or robust optimization to handle uncertain conditions,
while some advanced machine learning methods [12], [13], [14],
[15], [16], [17], [18], [19], [20] can give solutions which are
naturally adaptive for uncertain events. Convolutional neural
networks (CNNs) [12] have provided satisfying model-free
solutions to handle uncertain power supplies in contingency
screening [13] and uncertain load restoration [14]. Regarding
energy dispatch [15] and control [16] problems with dynamic
Markov features, deep reinforcement learning (DRL) meth-
ods have been widely used for decision-making. Equipped
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with imitation learning, DRL method handled real-time service
restoration issues in resilient distribution systems [17]. Ref.
[18] proposed a batch constrained DRL to realize a data-driven
dynamic distribution network reconfiguration. A DRL method
with distributed training was applied in [19] to solve large-scale
networked MG power management problems. By continuously
interacting with the environment and obtaining feedback [21],
the DRL method has shown the adaptability which is necessary
for dealing with SEEs. However, the data under extreme events
suffers scarcity issues [22], [23], [24]. System data from SEEs
is much harder to obtain than system data from normal cases.
The scarcity of SEE system data could negatively affect DRL
training processes, and efficient training is critical to ensure
reliable DRL applications [17], [18], [19]. Therefore, in order to
ensure reliable implementation with limited historical/practical
data, the DRL method needs further improvement.

A direct solution is to reasonably extend the original dataset.
In a SEE process, the uncertainties in renewable resources
and dynamic line outage damage conditions are key to the
proper resilient reactions of smart grids [8], [9], [10]. The
SEE-related dataset contains high-dimensional information and
reflects the time-varying nature of weather as well as complex
energy conversion processes which make it difficult for precise
analysis via model-based methods. However, generative adver-
sarial networks (GANs) [25], as an un-supervised model-free
method, can automatically extract data features without labeling.
With an outstanding capability for learning data properties,
GANs have been applied to generate renewable scenarios [26],
distinguish power grid outage data [22] and improve event
classification [27]. For the SEE-related data, GANs can ex-
tend the dataset by generating new and credible extra data
sets that capture the intrinsic features of the original data. The
GAN enhanced datasets can further benefit the performance of
DRL.

For the purpose of enhancing resilience during a SEE pro-
cess, this paper proposes a self-attention GAN enhanced DRL
(SA-GAN-DRL) method for survival of critical loads by flexi-
bly reconfiguring networked MGs. First, the Wasserstein GAN
(WGAN) is applied to organize an adversarial training process
for data feature extraction. Then, the self-attention GAN (SA-
GAN) is further developed using Attention Mechanism to prop-
erly generate data with strong sequential features, e.g., line dam-
age data. Finally, the SA-GAN is equipped into a reinforcement
learning architecture called double deep Q-network (DDQN),
and an environment is designed to train the SA-GAN-DDQN.

The contributions of this paper can be summarized as follows:
1) A new learning-based resilient defense scheme is proposed
for networked MGs against SEEs. Accordingly, networked MGs
can provide adaptive reconfiguration strategies to ensure survival
of critical loads during dynamic extreme weather events. 2)
The datasets of uncertain DG (wind-DG and solar DG) outputs
and line damage conditions, which are of particular interests in
extreme event related resilience studies, are extended to reduce
data scarcity. Without any additional data analysis efforts, the
originally limited historical data is reasonably and credibly
extended using un-supervised model-free GAN based methods.
The original GAN is further improved to formulate a customized

Fig. 1. Structure of GAN.

SA-GAN which has a stronger ability to learn from sequential
data in an MDP. 3) With a combination of the DRL method
with GAN based data extension approach, the proposed SA-
GAN-DRL method improves the application performance of
original DRL algorithms. With more stable and feasible actions
and higher reward values, the SA-GAN-DRL has improved
adaptability when applied to dynamic SEE conditions such that
the resilience of networked MGs can be further enhanced during
SEEs.

The rest of this paper is organized as follows: Section II
introduces the adversarial nets framework of the GAN, the
architecture of the developed SA-GAN, and the generative learn-
ing process of GAN method. The SA-GAN enhanced DDQN
method and the designed training environment are presented in
Section III for enhancing networked MG resilience. Section IV
provides case study results on a 7-bus DS and the IEEE 123-
bus DS with multiple MGs, followed by the conclusions in
Section V.

II. GAN BASED DATASET PROCESSING FOR RESILIENT

NETWORKED MGS UNDER SEES

GAN-based data extension is introduced in this section. First,
the adversarial learning principle and structure of a classical
GAN are presented. Then, the self-attention module is built and
incorporated into the GAN to form the SA-GAN. Finally, the
training data organization and learning algorithm are introduced.

A. Review of Wasserstein GAN

A GAN is an adversarial nets framework for estimating gen-
erative models via an adversarial process. As shown in Fig. 1,
a GAN contains two deep neural networks: a generative model
Generator that captures the data distribution, and a discrimina-
tive model Discriminator that estimates the probability that a
sample came from the training data rather than the Generator
[19]. For dataset extension, the goal of a GAN is to learn
the features of the original dataset by figuring out a mapping
relationship from a known distribution PZ (such as a Gaussian
distribution) to a targeted sample dataset (experience/history)
that follows a distribution PX. The function of the GAN relies on
the adversarial process, which is formulated as a game-theoretic
two-player nested min-max optimization of the Generator and
Discriminator. As long as the GAN is well-trained, the Gen-
erator is able to capture historical data features and extend the

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 18,2024 at 22:00:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SELF-ATTENTION GENERATIVE ADVERSARIAL NETWORK ENHANCED LEARNING METHOD 4371

dataset for DRL training. Theoretically, a GAN can generate
samples without any size limit.

The WGAN is an efficient GAN architecture that improves
training stability. It provides a Wasserstein metric-based loss
function to describe the quality of the generated samples [26],
which helps resolve the model collapse issue. Therefore, the
GAN in this paper follows the WGAN structure which is intro-
duced below.

1) Generator: The Generator is trained to transform a ran-
dom noise signal Z with distribution PZ (Z∼ PZ) into generated
artificial data Xfake. Z is the input of the Generator’s deep neural
network with learning parameters θG, and G(z) is the corre-
sponding output. The Generator implicitly defines a probability
distribution P

G
as the distribution of the samples G(z) obtained

when Z ∼ PZ.

Xfake = G (Z; θG) (1)

2) Discriminator: The Discriminator is trained to distin-
guish between fake data produced by the Generator from the real
data in the historical dataset. Suppose θD denotes the learning
parameters of the Discriminator. The input samples X, either
real data Xreal or fake data Xfake. The output is a probability pdis
ranging from 0 to 1, measuring to what extent the input samples
belong to a real dataset.

pdis = D (X; θD) (2)

3) Value Function V (G, D): In order to complete the training,
loss functions are needed to guide the updating of Generator
and Discriminator parameters. According to the WGAN [28],
the loss function LG and LD can be designed as (3) and (4).

LG = − EZ [D (G (Z; θG))] (3)

LD = EZ [D (G (Z) ; θD)]− EX [D (Xreal; θG)] (4)

In the adversarial process, the generator intends to minimize
the expectation of -D(G(·)) because a large discriminator output
pdis representing the sample is similar to the real data. The
discriminator tries to provide a small pdis for the fake data by
minimizing the expectation of D(G(·)), while giving a large pdis
by maximizing the expectation of D(X) when the input is real
data. Accordingly, the adversarial process forms a two-player
min-max game with the value function V (G, D).

min
G

max
D

V (G,D)

= EZ [D (G (Z) ; θD)]− EX [D (Xreal; θG)] (5)

B. Proposed SA-GAN

The behavior of a GAN relies on the Generator and Discrim-
inator which are essentially deep neural networks. Therefore,
various machine learning models can be embedded into their
constructions. The WGAN applies a CNN because of CNNs’
outstanding learning behavior. However, a CNN only processes
information in a local neighborhood, therefore using convolu-
tional layers alone is computationally inefficient for modeling
long-range dependencies of practice data. Therefore, a SA-GAN
is further developed using the Attention Mechanism [29] to form

Fig. 2. Structure of self-attention module.

Fig. 3. Architecture of SA-GAN.

a self-attention module which enables both the Generator and
the Discriminator to efficiently model non-local relationships.

The SA-GAN was originally developed for image generation
tasks [30]. For targeted resilient networked MGs under an SEE,
the self-attention module of the SA-GAN can help the MGs
to better learn the sequential features of system data in the
whole SEE process. Therefore, a SA-GAN with customized
architecture is proposed to generate a SEE-related dataset. The
SA module and the architectures of the proposed SA-GAN are
shown in Figs. 2 and 3, respectively.

The input data x (x�RN×C) from the previous layer are first
transformed into Query, Key and Value layers to calculate the
attention. Convolutions with kernel size 1 are applied to form
Query (Q=Wfx), Key (K=Wgx) and Value (V=Whx) matrixes
with the shape N × C where N = W × H. Then, the matrix
dot product and softmax function (6) are used to generate an
attention map, with the shape N × N.⎧⎨

⎩
βj,i =

exp(Sij)
∑N

i=1 exp(Sij)

Sij ∈ S = QKT
(6)

where βj, i indicates the extent to which the model attends to
the ith location when the jth region is synthesized. The corre-
sponding attention map describes each pixel’s attention score
on every other pixel. Then, attention weights are obtained by
the matrix dot product of V and the attention map. The attention
weights describe each pixel’s total attention score throughout
all pixels. Holding this feature, they are further reshaped to be
self-attention feature maps a with shape W × H × C.

Finally, a learnable scalar γ initialized as 0 is set to multiply
the output of the attention layer and add back to the input feature
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map. The output of the self-attention module is (7).

y = γa+ x (7)

The learnable scalar γ causes the self-attention module to
do nothing initially, before gradually learning to assign more
weight to non-local evidence. The learnable scalar γ benefits the
learning process by learning the easy task first and progressively
increasing the complexity of the task [30].

Two elements are concerned in an event related changeable
environment: uncertain DG output (wind power and photo-
voltaics (PV) in this paper), and line damage conditions. Ac-
cordingly, the historical database contains one-day (24 hours)
wind PW and solar PPV DG outputs, and line damage data
DLine. Set N as the number of DGs, loads and affected lines
in the event tracks, the input data [PW; PPV; DLine] for the
Discriminator is a matrix with size [N, 24, 1] where the first
three numbers are the height, width and channels.

Taking the input size [24, 24, 1] for an example, Fig. 3 shows
the data processing of the SA-GAN. The Generator starts with
a fully connected layer (F-con) for up-sampling. Then, the first
de-convolutional layer (De-conv1) has, with filters, the size
[4, 4, 1, 128] where the first three numbers are the height,
width, and depth of each filter and the last one is the number
of filters. The filter of De-conv2 has the size [4, 4, 128, 64].
Hence, the output of De-conv2 has the size [24, 24, 64], and
it goes through the SA module. The SA module remains the
same size and it further provides output using a convolutional
layer Conv1 with a filter sized at [4, 4, 64, 1]. Similarly, the
Discriminator has a reversed construction with 4 convolutional
(Conv) layers which have filter sizes [3, 3, 1, 16], [3, 3, 16,
32], [3, 3, 32, 64] and [3, 3, 64, 128] for Conv1 to Conv4,
respectively.

To conclude, the Generator and Discriminator of the SA-
GAN are designed as shown in Fig. 3. The Generator contains
2 De-conv1(transposed convolutions) layers and 1 Conv layer
to up-sample the input noise z with size [1, 100, 1] to the output
G(z) with the size [28, 28, 1], while the Discriminator includes 4
convolutional layers to down-sample the input with size [28, 28,
1] to the output pdis. The self-attention modules are embedded
into the de-convolutional/convolutional layers to enhance the
non-local observation.

C. Training Process of SA-GAN for Data Generation

As long as the GAN is well-trained, the Generator is able
to capture event-related features and extend the dataset for
DRL training. The adversarial training process of the SA-GAN
is implemented using Algorithm 1 which is a non-parametric
unsupervised learning process without pre-defined labeling.

In the training process, the Generator attempts to generate
fake samples with the highest possible value of D(G(z))) to
fool the Discriminator, while the Discriminator tries to tell the
difference between practical/historical samples and generated
fake ones. Generator and Discriminator construction parame-
ters update continuously during training episodes, representing
a fierce competition between D and G to improve themselves.
Eventually, the Discriminator converges to similar output values

Algorithm 1: Training Process of SA-GAN.
Require: Sample/real DG output and line damage data from
historical sample database Xreal

Require: Learning rate α, batch size M, number of
iterations for discriminator D per generator G iteration
nD, initial learning parameters for D and G, θD and θG.
While θD has not converged do

for t = 0,..., nD do
Sample a batch {X real

i }Mi
=1 ∼ PX from the historical data.

Sample a batch {Z i} Mi
=1 ∼ PZ from Gaussian

distribution.

gDθ ← ∇D
θ

[
1

M

∑M

i=1
D (G (Zi))− 1

M

∑M

i=1
D

(
X real

i

)]
(8)

θD ← θD − α ·DRMS Pr op
(
θD, gDθ

)
(9)

θD ← Clip
(
θD,−c, c) (10)

end for

gGθ ← ∇G
θ

[
− 1

M

∑M

i=1
D (G (Zi))

]
(11)

θG ← θG − α ·DRMS Pr op
(
θG, gGθ

)
(12)

end while

for D(G(z)) and D(x), which means the Discriminator identifies
the tiny difference between the real data and the fake data, and
the Generator creates realistic event-related samples.

Training is implemented in a batch-updating style, while a gra-
dient descent algorithm RMSProp with a self-adjustable learning
rate is applied for weighted updates of the Discriminator and
Generator neural networks. Clipping is also applied to constrain
D(x; θ(D)) to satisfy certain technical conditions as well as to
prevent gradient explosion [28].

The completion of Algorithm 1 shows that the proposed
SA-GAN is able to reasonably and credibly extend sequential
DG output and line damage data. The well-trained Generator
is extracted to generate enhanced training data for the DRL of
resilient networked MGs against SEEs. The application of the
SA-GAN as well as its combination with the DRL method is
introduced in next section.

III. SA-GAN-DRL FOR SURVIVAL OF CRITICAL LOADS

This section introduces the complete SA-GAN-DRL method.
First, the dynamic reconfiguration of networked MGs is formu-
lated to fit into a DDQN form. Then, a detailed reward function
design and environment for networked MG reconfiguration is
introduced. Finally, the entire GAN-enhanced DRL framework
is concluded.

A. DDQN-Based Reconfiguration Strategy for Survival of
Critical Loads

During the SEE process, an efficient way to reduce the impacts
of events is to ensure the survival of critical loads, which is a

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 18,2024 at 22:00:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SELF-ATTENTION GENERATIVE ADVERSARIAL NETWORK ENHANCED LEARNING METHOD 4373

sequential decision-making problem in a multi-step MDP. At
each step, a topology configuration is determined to ensure
critical loads are safely supplied under the current system power
supply-demand conditions and line damages.

In the MDP, the state is the system P-Q condition and topology
condition [P; Q; Dtopo] where Dtopo is the system topology
considering the last step switch status and current line damages.
The action is the on/off decision of remotely controlled switches
(RCSs) and the reward is the grid security condition after taking
an action in a state. The DDQN method is applied to provide
an adaptive reconfiguration strategy for survival of critical load
during the SEE process.

The DQN method is a combination of deep neural networks
and Q-learning, which updates the action-value function itera-
tively [31]. In this paper, a CNN is used to organize Q networks.
The objective of Q-learning is to estimate the value for an
optimal policy. Accordingly, the agent (operator) can decide how
to optimally perform actions by learning the Q values (Q(.)).
The Q network is updated with a loss function representing the
mean-squared temporal difference error, as shown in (13).

L (θ) =

[
rt + γmax

At+1

Q(St+1, At+1 |θ )−Q(St, At |θ )
]2

γ ∈ [0, 1]
(13)

where St, At and rt are the state, action and reward at step
t, respectively, γ is the discount factor, and θ represents the
parameters which organize the Q network.

With two separated Q networks, the DDQN method improves
on the original DQN method by decoupling the action selection
and action evaluation [32]. The original Q network is used
to select the action with the maximum Q value while the
T-Q network evaluates the Q value of the selected action. The
T-Q network is a fixed network which is not updated in the Q
network updating process. The fixed feature enhances efficiency
and stability in the learning process. The loss function (13) is
adjusted into (14) accordingly.

Lt (θ)

=

⎧⎪⎨
⎪⎩
[rt−Q (St, At |θ )]2 (t = T) otherwise,[
rt+γmax

At+1

T−Q (
St+1, At+1

∣∣θTar
)−Q (St, At |θ )

]2
(14)

where T is the total number of steps.
According to (14), defining a suitable reward function is an

indispensable part of completing the learning process for DRL
methods. For the adaptive reconfiguration of networked MGs,
the action (reconfiguration strategy) should first ensure that the
critical loads have access to available DGs. Further, the security
constraints such as voltage and branch flow limits should be
considered to ensure critical loads can be successfully supplied.

Algorithm 2 shows the learning process of the DDQN in a
compact form. A detailed version of the process can be found in
[1], [32].

Algorithm 2: DDQN Learning Process.
Initialize Q network and T-Q network with same random

weights and bias. Initialize replay memory. Set Dstep = 0. Set
batch size, Episode M, step number T and Epsilon-greedy
parameters.
S1: for Episode from 0 to M do

Initialize s the environment
for Step from 1 to T do

Perform Epsilon-greedy method and obtain αstep.
Execute αstep in the environment and obtain the
reward value.
Organize new state Sstep+1.
Add record [Sstep, αstep+1, rstep+1, Sstep+1, Dstep] in
memory.
If topology is infeasible do

Update T-Q as Q
Break;

End if
If conditions for replay are satisfied do

Train Q network (Q-CNN)
If Step = T do

Update T-Q as Q
End if

End if
End for

End for
S2: Obtain the Q network.

B. Design Reward and Environment

The reward function (15) is designed to help determine the Q
network for the survival of critical loads problem supported by
adaptive reconfiguration.

rt (St,At) =

{
fcon (αt)−

∑
fAC (P t,Qt,αt) Scon = 1

fcon (αt) Scon = 0
(15)

where Scon is the signal showing whether the topology is feasi-
ble, and fAC,i(.) is the function related to AC power flow results.
If Scon = 1 (topology feasible), fcon(.) provides the reward w;
otherwise, fcon (.) gives punishment –w. The feasible topology
should ensure each critical load is supplied by at least one DG
and there are no RCSs switched on in damaged lines. This
part will be introduced in detail in the following environment
building step. The variable fAC,i(.) consists of voltage violation
pvol,j, system power loss ploss,i, branch overflow pbran,l, and
power unbalance fpb(.). This is given by (16)

fAC (P t,Qt,αt) =
∑

j∈node
pvol,j + ploss

+
∑

l∈bran
pbran,l + fpb (P t,αt) (16a)

fpb (P t,αt) =
∑

j∈load
pL,j + ploss −

∑
j∈DG

pDG,j (16b)
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Fig. 4. Interaction of agent and environment.

Algorithm 3: Environment Implementation.
Require: Select critical load set Lcri. Obtain current state
St and extract DG output PDG, t, load amount Lt and
destroyed lines Dt for current step. Obtain action At from
the agent.
Set k = 1. Initialize MG list as an empty set {}
If switch on destroyed lines then

Topology infeasible
Else:

While i in DG node set do:
If DG node i has not been recorded then

Search from DG node i and label nodes
connected to i. Record all the nodes in set MGk

connected to DG node i and extend MG list with MGk.
k = k + 1

If all the DG nodes have been labeled:
Break

Check critical node set Lcri

If any nodes in Lcri are not recorded:
Topology infeasible

Else:
Topology feasible
Get updated MG list {MG1, …MGk-1}

If Topology feasible then
Perform AC power flow for updated MGs in the MG list
Record power flow result

Else:
Game over and stop the MDP at step t.

Obtain the reward at step t according to (15), and form St+1

Specifically, in the learning process, the penalties in the re-
ward are divided into hard constraints and soft constraints. The
hard constraints are reflected by fcon (.) which leads to an MDP
“game over” if it is triggered (Scon = 1). The soft constraints
are the other penalties which reduce the reward value instead of
triggering an immediate “game over”.

As shown in Fig. 4, the reward is calculated based on envi-
ronmental feedback. The environment, which contains a graph-
theory-based connectivity (topology) check and an AC power
flow calculation, simulates the system conditions after the Q
network generated action is applied. After clearing the connec-
tivity check module ensuring each critical load is supplied, AC
power flow will be performed in a newly updated networked
MG system. The process of implementing that environment is
shown in Algorithm 3.

Fig. 5. The SA-GAN enhanced DQN.

C. GAN-Enhanced DQN

The whole framework of the GAN enhanced DRL method
is concluded in Fig. 5. First, the initial training data, which
can be either historical or forecast data in a sequential Markov
form, is used to perform the SA-GAN training process. As long
as the generative learning process Algorithm 1 converges, the
Generator is obtained to generate enhanced training data for the
deep RL method. The SA-GAN extracts event related features
such that it can generate enough SEE-related scenarios without
the limitation of scarce event data.

The DDQN method is performed using the enhanced train-
ing data. Algorithm 2 and Algorithm 3 are performed as the
pre-training processes such that the Q-network may capture
the topology and power flow related features of the networked
MGs under the SEE process. Finally, the agent containing the
well-trained Q network is obtained. Accordingly, the agent can
give corresponding reconfiguration strategies regarding current
DG output, load amount, and line damage conditions. This is
called adaptive reconfiguration because the agent can flexibly
adjust network configurations for the survival of critical loads
based on event conditions.

Note that the SA-GAN-DDQN method can have a model-free
application since the well-trained agent does not need system
models to provide proper actions. Moreover, the SA-GAN can be
further improved by incorporating newly updated event and sys-
tem information if the training conditions are trigged. Through
fast-generated adaptive reconfiguration of networked MGs, the
purpose of the proposed method is to ensure that each critical
load is safely supplied under uncertain conditions during the
SEE process. The SA-GAN-DRL method can also be used in
other DRL methods.

IV. CASE STUDY

This section introduces the training and application perfor-
mances of the proposed GAN enhanced DRL method. First, the
data generation performances of GAN methods are shown and
the improvement of the SA-GAN is presented by comparing
with the original GAN [22], [26]. Then, the functions of the
SA-GAN for the DRL method are demonstrated by comparing
the original DDQN [1] and the SA-GAN enhanced DDQN.
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Two systems are used: the two DGs integrated 7-bus system
and twelve DGs integrated IEEE 123-bus system. The time
horizon is set as 24 steps (24 hours), and each network reconfigu-
ration step is set as 1 hour. The DRL codes and the corresponding
environment are written and compiled in Python 3.7. Neural
networks are built using TensorFlow 2.2 and Keras 2.4. Pypower
5.1 is applied to solve the power flow calculations in the envi-
ronment. All simulations were conducted on a computer with
Intel(R) Core (TM) i7-8550U CPU and 16 GB RAM. All the
GAN related models in this paper are trained using the RmsProp
optimizer with a mini-batch size of 32, while the DQN related
models are trained using the Adam optimizer with a mini-batch
size of 30.

A. SA-GAN Based Data Processing

The generated data are divided into two categories. The first
category is the uncertain sources: DGs (wind power and PVs)
output. The second category is the hurricane track with sequen-
tially damaged lines.

The wind and solar datasets are obtained from the NREL Wind
and Solar database [33], [34]. A total of 12 wind farms and 12
solar power plants located in the north-western part of Texas
are selected. One-day data with one-hour intervals is taken as an
example, and 100 samples are extracted from the summer period
(June - August) as the training and validating datasets.

The line damage data is generated following some sequential
features of hurricanes. The sequential and regional properties
[8], [11] are considered in this paper:

1) The line damages have sequential features. For instance,
lines L4 and L6 are possibly damaged lines only if line
L2 is destroyed. Lines L5 and L7 are possibly damaged
only if L6 is destroyed. Lines will not be recovered in the
considered time-horizon as long as they are destroyed.

2) Several possible paths exist. Since it is difficult to forecast
the exact hurricane path, the trace is assumed to have two
branches in each time interval (D1-D3). 8 steps and 6 steps
are taken as a time interval for the 7-bus system and the
IEEE 123-bus system, respectively. Further, the hurricane
will eventually go through one path which means either
line L4 or line L6 is destroyed, and either line L5 or line
L7 is destroyed.

3) The probability of line damage is gradually reduced.
There is an 80% chance that lines in D1 will be destroyed,
while the chances that lines in D2 and D3 will be destroyed
are 70% and 60%, respectively. The hurricane will eventu-
ally go through one path or the other, which means either
L4 or L6 and either L5 or L7 are destroyed.

In a 24-step process, the statuses of the potential damaged
lines are represented using 0 and 1 (0 for unimpacted lines
and 1 for destroyed lines). Following the previous properties
1)-3), 100 samples of line outage conditions under hurricanes
are generated.

In this paper, the GAN based method learns from 100 samples
and generates 300 samples using a well-trained Generator. Note
that the GAN is able to generate a database with any sizes.

1) Uncertain Power Supply: Both the original GAN and
SA-GAN have good performance in generating uncertain power

Fig. 6. Line outage conditions under hurricane.

supply data. Figs. 7 and 8 compare the original historical data set
and the SA-GAN-generated one. Therein, the green lines denote
detailed one-day samples of wind turbine (WT)-DG output and
PV output. By providing one-day samples with shapes similar
to the historical ones, the SA-GAN shows the ability to capture
the data feature. This is especially obvious for the PV output in
Fig. 7 which is next to zero at night and reaches the maximum
output at noon.

Furthermore, the GAN-generated samples are reasonable ex-
tensions of the original data features. The blue and red curves
in Fig. 7(a) and Fig. 8(a) respectively represent the upper and
lower bounds of historical samples and SA-GAN-generated
ones, while the blue and red lines in Fig. 7(b) and Fig. 8(b) show
the mean values of historical and GAN samples, respectively.
As can be observed, the upper and lower bounds of SA-GAN
generated data almost contain the historical ones. Meanwhile,
mean values of SA-GAN generated data and the historical data
are similar. Therefore, the SA-GAN enhances the robustness
of the database by considering possible extra scenarios with
statistical properties similar to the original database. GAN data
with more statistically similar properties can be found in [26].

2) Sequential Damaged Line Data: For the line damage data
with much stronger time-series features in a long horizon, the
constructed SA-GAN has a better performance than the original
GAN in [22], [26].

Fig. 9 shows the training processes of the GAN and SA-GAN.
At start, the loss values of the Discriminator (blue, D) and the
Generator (red, G) have large fluctuations as well as differences.
As the training progresses, the losses of the SA-GAN in Fig. 9(b)
converge to relatively stable values with the Wasserstein distance
(green, W) close to zero, while the original GAN in Fig. 9(a)
still shows large fluctuations with the same training iterations.
These indicate that the SA-GAN can be successfully trained to
learn underlying data features in historical datasets while the
GAN fails to provide an efficient generator.

Taking the hurricane track in Fig. 6 as an example, 100 line
damage samples are generated using the GAN and SA-GAN
Generators. The no-repeat line damage conditions extracted
from these samples are demonstrated in Figs. 10 and 11 with
‘stars’ showing the outage time. As seen in Fig. 10, four typical
conditions in the training dataset were learned by the GAN,
while there are six possible line damage conditions in Fig. 6.
In addition, the inefficient training process of the GAN leads
to some unreasonable samples. In Fig. 10, the GAN generates
samples with line outages in different paths, e.g., Lines L4 and
L6 as well as L4 and L7 cannot all be destroyed in one hurricane
path. Compared with the GAN, the SA-GAN generates all
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Fig. 7. PV outputs of historical and SA-GAN generated data.

Fig. 8. WT-DG outputs of historical and SA-GAN generated data.

Fig. 9. Training evolution for GAN and SA-GAN on a line damage dataset.

the theoretically possible line damage conditions. Further, the
typical conditions are expanded by adjusting line outage time
and holding the sequential features at the same time. This enables
the generated samples to enhance the robustness and adaptability
of the DRL method when they are fed into the DRL training
process.

B. SA-GAN-DRL for Survival of Critical Loads in the 7-Bus &
123-Bus Systems

The SA-GAN is integrated in the DDQN method and the
whole SA-GAN-DRL method is tested in the 7-bus system and
IEEE 123-bus system. The historical dataset is divided into a
training dataset with 80% samples and a testing dataset with
20% samples. The SA-GAN-DRL method was trained with a
SA-GAN generated dataset, while the original DRL method was

Fig. 10. GAN-generated line damage samples (no-repeat conditions in 100
samples).

Fig. 11. SA-GAN-generated line damage samples.

Fig. 12. The 7-bus system.

Fig. 13. Reconfiguration of networked MGs in one day.

trained using historical training data. Test results of the SA-
GAN-DRL method are compared with the DDQN method in
[1].

Taking one hurricane path as an example, the distribution
system lines will be damaged sequentially as shown in Fig. 13.
The RCSs are equipped on L1, L4 and L5. Fig. 13 presents
the configurations of networked MGs over 24 h. The GAN en-
hanced Q network provides an adaptive reconfiguration scheme
to hold critical loads. As shown in Fig. 13, L2 is damaged first.
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Fig. 14. Rewards of testing samples of 7-bus system.

Fig. 15. Performances of training DRL with different number of GAN meth-
ods generated samples.

Therefore, the critical load, Load3, which is initially supplied
by MG2 in Fig. 6, is transformed to MG1 in Fig. 13(a). As the
SEE evolves, switches on damaged lines are opened as shown in
Fig. 13(b) and (d). Based on DG outputs and network conditions
during the whole SEE process, the GAN enhanced Q network
flexibly transfers the paths of critical load supplies and avoids
switches on damaged lines.

Using testing samples, the performance of the SA-GAN-DRL
method (trained with GAN enhanced data) is compared with
the original DRL method (trained with the initial data). Al-
though most of the reward values are similar, there are some
cases in which the SA-GAN-DRL framework (pink curve in
Fig. 14) has greater reward values than the original DRL method
(blue curve in Fig. 14). Since the reward is related to power
balance, voltage security and power losses, a higher reward
value means a better power dispatch across the whole system
of networked MGs. Moreover, the proposed method ensures
that all critical loads can be served with at least one available
power source across the entire 480 steps (i.e., hours) of 20
samples, while the original DRL method fails to find a solution
to supply some critical loads under two samples. Therefore, the
SA-GAN-DRL method shows stronger robustness and better
adaptability than the original DRL method according to the test
results.

The performances of extending training datasets using GAN
is shown in Fig. 15. Agent performances of applying different
numbers (50, 100, 200, and 300) of GAN generated samples are
shown using reward values during 480 test steps. As shown in the
figure, the amount of critical loads shedding (with ab-normal low
reward value -1) is reduced as the number of samples increases.
The average reward value increases from 0.9458 to 0.9807 when
the sample number increases from 50 to 300, which means
a better power dispatch across the whole system using DRL

Fig. 16. Performances of SA-GAN-DRL in scenarios not included in the
source database.

Fig. 17. Reconfiguration of networked MGs in one day.

decision results. Therefore, more useful training data generated
by GAN can improve the application performance of DRL.

In addition to the original dataset, 20 out of example sam-
ples with 240 steps are tested. They are generated with 20%
fluctuations from the boundaries of the source database. The
performance of DDQN and SA-GAN-DDQN are shown in
Fig. 16 below. Although the tested scenarios are not included
in the original dataset, DDQN successfully provided reason-
able actions in 156 of 240 steps, while SA-GAN-DDQN im-
proved the number of reasonable actions to 226 steps. In
other words, the DDQN itself can provide some adaptivity for
some out of example cases, but the ability is limited. Using
our proposed GAN based dataset extension, the adaptivity of
DDQN can be further enhanced to satisfy more out of example
cases.

Fig. 13 shows the MG formation changes under a SEE. The
mutual assistance among MGs is more obvious in the large-scale
IEEE 123-bus system, which is divided into five networked MGs
as shown in Fig. 17. Figs. 18(a) and (b) show the training process
of the SA-GAN-DDQN in the IEEE 123-bus system. 16 actions
are designed for the network adjustment of networked MGs.
The number of steps for each episode with successful survival of
critical loads is shown in Fig. 18(a). 24-hour load survival means
a successful adaptive resilient defense of networked MGs, while
any incorrect switch actions (losing critical loads or switching
on damaged lines) in the process directly lead to the end of
an episode. Well-trained Q networks are obtained after 850
episodes. The relatively stable 24-step load surviving at the end
of the training process demonstrates that the SA-GAN-DRL
method successfully learned how to form feasible topologies

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 18,2024 at 22:00:37 UTC from IEEE Xplore.  Restrictions apply. 



4378 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 5, SEPTEMBER 2023

Fig. 18. Training process.

Fig. 19. Rewards of testing samples of the IEEE 123-bus system.

Fig. 20. Resilient responses of DRL and GAN-DRL.

for the purposes of survival of critical load by providing on/off
switch decisions in the dynamic SEE process.

The training result of the IEEE 123-bus system is tested to
show the benefit of the proposed method. In the 480 test steps
in Fig. 19, the SA-GAN-DRL method, with an average reward
value of 1.93, realizes more effective energy dispatch than the
DRL method, which has an average reward value 1.90. That is
because the two methods have different learning results. Under
the same SEE condition (DG outputs and line damage condi-
tions), the resilient defenses of the DRL method and GAN-DRL
method are shown in Fig. 20.

In Fig. 20, the original system in Fig. 17 is transformed
into a compact form by forming load and DG blocks. Therein,
red nodes contain DGs, green nodes contain loads, and the
black nodes contain buses without DGs or loads. Specifically,
green nodes with red numbers represent critical loads. With line
damages shown in the figure, both methods have learned to hold
critical loads through mutual assistance among MG3, MG4 and
MG5. However, the GAN-DRL scheme obtains higher reward
value by connecting MG1 and MG2. Although this action does

Fig. 21. Rewards of testing samples of the IEEE 123-bus system.

TABLE I
COMPARISONS WITH OPTIMIZATION-BASED METHODS

not benefit the survival of critical load, it reduces power losses
and improves energy efficiency.

Overall, the SA-GAN-DRL method improves the adaptability
of the original DRL method in two aspects:
� It provides more stable feasible actions. As shown in

Fig. 14, when the action of the DRL method cannot form a
feasible topology with a reward value of -1, the SA-GAN-
DRL method gives feasible actions.

� It provides actions with better performance. As shown in
Fig. 19, when the actions of both methods are feasible,
the SA-GAN-DRL actions normally have higher reward
values.

The proposed SA-GAN-DRL method is compared with
optimization-based methods. A widely used mixed-integer lin-
ear programming (MILP) model [4] and an accurate mixed-
integer second-order conic programming (MISOCP) model [35]
are employed. To compare the performance of different methods,
the objective value is set as the supplied load amount minus
power losses in the entire system. Fig. 21 shows the objective val-
ues from different methods during a complete 24 steps Markov
process. The process is realized by recursively applying MILP
and MISOCP models in each step. The data-driven MILP may
lead to better performance and higher accuracy. As listed in
Table I, the MILP model has satisfactory computational speed.
However, the result has a large optimization gap because of the
relatively rough relaxation of power flow as well as power losses.
The accurate MISOCP model provides the highest objective
value. However, the computation time is much longer than the
other two methods. If compared with the optimization methods,
our proposed method has an extremely fast computation time of
0.091 s and an acceptable optimization gap of only 1.81%.

V. CONCLUSION

The changeable environment and power system conditions
during the SEE process require high adaptability of the resilient
response scheme. To improve grid resilience during the SEE
process, this paper proposes a DRL method enhanced by the
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SA-GAN to ensure survival of critical loads using networked
MGs. The GAN is developed with the Attention Mechanism
to better learn the sequential features of system data in the
entire SEE process. Further, the DRL method is equipped with
the SA-GAN to implement efficient learning with limited data.
According to the case studies, the proposed SA-GAN reason-
ably extends the dataset by generating new and distinct extra
data that captures the intrinsic features of the original data,
and the proposed SA-GAN-DRL method provides robust and
adaptive scheme for the survival of critical load during SEE
processes.
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