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A B S T R A C T

As the flexibility of generation and demand increases in distribution systems, the residential loads are emerging
as a promising means to participate in demand response and the transactive energy market. Market pricing is
an instrumental mechanism for the distribution system operator to exploit the full potential of the flexible
resources. The distribution locational marginal price (DLMP) can be used to guide the residential load
consumption. This type of market signal helps the distribution system operator to optimize the scheduling
of all resources while satisfying related network constraints through a day-ahead market. However, solving
the optimization problem for large-scale systems can be computationally expensive. To address the scalability
and practicability limitations of the DLMP framework, a learning-based approach is proposed in this paper to
complement the day-ahead distribution market framework. The proposed approach combines long short-term
memory and transfer learning to develop deep neural network that can capture the spatial–temporal correlation
of the input data. The model can determine the optimal DLMP for each node in a distribution system without
the system parameters required to formulate the optimization problem. Testing results on IEEE 33-bus and
123-bus systems show that the proposed approach can generate a comparable DLMP against the optimization
solutions.
1. Introduction

As distribution networks transition from passive components of the
power system to active players in the electricity market, new opportu-
nities are opening for consumers to participate in and take advantage of
electricity cost savings while providing various grid services. The elec-
tricity market is designed for economic dispatch in power systems to
achieve the supply–demand balance by solving the optimal power flow
(OPF) problem [1]. The locational marginal price (LMP) has been well
implemented by independent system operators/regional transmission
organizations at whole-sale transmission-level power markets in the
past decade [2]. With the increasing use of distributed generation and
flexible load in the distribution networks, researchers have extended
LMP to distribution LMP (DLMP) considering the different characteris-
tics of the modern distribution systems [3–10]. DLMP is a pricing signal
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for consumers to make economic decisions by adjusting their electricity
load. Because of the uncertainty introduced from increasing penetration
of flexible loads and renewables such as PVs, the OPF problem needs
to be solved more frequently to achieve optimal dispatching at the
distribution level. However, the high computation complexity of the
OPF problem can be a major obstacle to practical applications for
large-scale systems [11,12].

1.1. Related work

Various learning-based approaches has been proposed to tackle
these subjects. Deep neural networks (DNNs) are used to predict the
result of OPF problems without solving the optimization problem. Liu
et al. [13] proposed a learning-based aggregated response load model
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that can participate in a transactive energy market. García et al. [14]
presented a learning-based methodology to forecast different compo-
nents of the LMP. Pan et al. [15] determined the OPF solution via a
DNN, which learns the mapping between the load inputs and decision
variables. Huang et al. [16] demonstrated that the DNN-based approach
can achieve a speed increase up to three orders of magnitude compared
with conventional OPF solvers. Chatzos et al. [17] provided a two-
stage distributed learning approach to predict AC–OPF solutions that
exploit a spatial network decomposition. Owerko et al. [18] and Liu
et al. [19] leveraged graph neural networks to predict OPF solutions
with grid topology-based features, the approach directly predicted the
LMPs, which are the actual OPF outputs for the electricity market.
These works show that learning-based approaches can predict reason-
able OPF solutions while reducing the computational burden. Most
of the mentioned learning-based approaches focus on predicting OPF
solutions at the transmission level, and limited research has been done
on the distribution level considering the bidding of flexible load.

Moreover, most of the existing learning-based methods can only
be applied on the source system and not on a different system with
different topology and parameters. Transfer learning is an emerging
training method that retains and reuses previously learned information
to solve new problems. Transfer learning can adapt an old model to a
new situation with fewer training data and less training time, and it
enables the model to learn from the information of the source domain
to solve a problem in the target domain [20]. Transfer learning has been
widely applied on image recognition and text classification. It has also
been used on different power system-related learning tasks [21–27].
A gradient-enhanced physics-informed neural networks is proposed to
solve OPF problem in [28], transfer learning is applied for different
initial conditions. Zhang et al. [29] demonstrated that the convergence
rate can be dramatically accelerated by extreme transfer learning for
the proposed multi-agent optimizer for decentralized optimal carbon-
energy combined flow. An optimal scheduling strategy for microgrids
based on the deep deterministic policy gradient and transfer learning
was proposed by Fan et al. [30], which effectively used the existing
scheduling knowledge. Ren and Xu [31] applied a transfer learning-
based data-driven method for pre-fault dynamic security assessment of
power systems, which enabled the dynamic security assessment to be
used for unknown different but related faults by reducing the distri-
bution difference between the trained data and unknown data. These
studies demonstrate the significance of transfer learning in boosting the
performance of the learning model through effectively using the knowl-
edge from the source domain. However, in general, the application of
transfer learning in the field of power systems is still in the exploratory
stage.

1.2. Challenges and opportunities

In the previous tri-level bidding and dispatching framework [32],
the DLMP was used as a price signal to guide the electricity consump-
tion of the customers. The optimal DLMP was obtained by solving a
bi-level optimization problem. A key feature of the DLMP algorithm
is to design a customized utility tariff based on the temporal features
of the whole network and the spatial patterns of the loads/generation
across the whole distribution network. Such a comprehensive DLMP
solution has great potential to provide benefits to both the utility
company and end users. Three main barriers exist for DLMP to be
widely adopted:

• For a large-scale system, solving the optimization problem can be
time-consuming, or a feasible solution may not be obtained with
limited computation power.

• For an arbitrary distribution network, the system parameters that
are required to formulate the optimization problem may not all
be available/observable.
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• Utility companies require a plug-and-play solution that can effi-
ciently and robustly generate DLMP curves for real-world opera-
tion scenarios involving uncertainties or even faults.

To address these challenges, a data-driven approach was proposed
to determine the optimal DLMP for each node in a distribution network.
The proposed approach combines long short-term memory (LSTM)
units and transfer learning to develop a DNN that can capture the
temporal dependencies of the time series inputs, as well as the spatial
patterns of the distribution network. Thus, the DLMP of each node
can be approximated based on certain input features without solving
the OPF problem. To increase robustness of the DNN method against
uncertainty, a sliding window method is demonstrated to mitigate the
effect of uncertainty/noise in the prediction profiles of PVs and flexible
loads. In addition, to address the insufficient training data in practice,
the proposed DNN model can be applied on different distribution
systems through transfer learning, which enables a pretrained DNN to
learn the features from the target system more efficiently. The proposed
approach provides a possible pathway to transfer knowledge between
systems with different topologies by isolating the topology related
inputs with an additional layer. By doing this, it allows one to reuse
the common relationship between certain inputs and the optimal results
from one system to another.

1.3. Contribution

Opposing to directly employing classical OPF and bi-level opti-
mization frameworks to calculate the DLMP, we derive a data-driven
solution to reduce the modeling and computational complexities of
state-of-the-art DLMP solution techniques, thereby improving scala-
bility and practicability. The proposed approach combines LSTM and
transfer learning to develop DNNs that can capture the spatial–temporal
correlations of the input data. The principle contributions of this work
are summarized as follows:

1. Data-driven with machine learning: A DNN model was de-
veloped that considers both temporal dependencies of the time
series inputs and spatial characteristics of the distribution net-
work. The proposed DNN model can approximate the optimal
DLMP across different nodes in a distribution system with ac-
ceptable errors and significantly reduce the computation time
compared with the optimization-based approach.

2. Robust with rolling horizon: An ancillary rolling horizon ap-
proach was applied to increase the robustness of the proposed
data-driven model. Through multiple simulations, the effect of
rolling horizon window length selection against the uncertainty
of the inputs such as PVs and flexible loads is demonstrated.

3. Adaptive with transfer learning: A transfer learning method
was applied on the proposed data-driven model by leveraging
pretrained model parameters, which address the issue of insuffi-
cient training data and improve the adaptiveness and practicality
of the proposed approach on different distribution systems. The
performance and effectiveness of the transfer learning were eval-
uated through different simulation scenarios with PV generation
and flexible loads. Simulation results on various cases show that
the proposed approach can generate robust pricing decisions
with less than 5% error compared with the benchmark data
provided by the optimization-based approach. In addition, the
proposed learning-based DLMP framework can be quickly and
conveniently deployed on a new target distribution network with
very limited data by leveraging the transfer learning techniques.

The rest of this paper is organized as follows. Section 2 describes
the tri-level bidding and dispatching framework and the formulation
of the problem. Section 3 proposes the data-driven approach to obtain
an optimal DLMP. Case studies on IEEE 33-bus and 123-bus systems
in Section 4 demonstrate the effectiveness of the proposed approach.
Section 5 provides conclusions.
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Fig. 1. Tri-layer day-ahead distribution-level electricity market.

2. Tri-level DLMP framework

A tri-level bidding and dispatching framework based on compet-
itive distribution operation with a DLMP was established by Wang
et al. [32]. Various market participants are shown in Fig. 1. The
first two levels of the market form a bi-level model to optimize the
aggregators’ payment and to represent the interdependency between
load aggregators and the distribution system operator (DSO) using the
DLMP. The objective of the first level is to minimize the aggregators’
power purchasing cost:

min
∑

𝑡∈𝑇

(

∑

𝑖∈𝐻
𝜋𝑝
𝑖,𝑡 ⋅ 𝑃

𝐴𝑔𝑔
𝑖,𝑡

)

(1)

where 𝑃𝐴𝑔𝑔
𝑖,𝑡 is the active power of the aggregator 𝑖 at time 𝑡, 𝜋𝑝

𝑖,𝑡 is the
active DLMP of node 𝑖 at time 𝑡. The objective of the second level is
to minimize system’s generation cost while maintaining all operational
constraints:

min
∑

𝑡∈𝑇

∑

𝑖∈𝐺
𝑐𝑖,𝑡 ⋅ 𝑃

𝐺
𝑖,𝑡 + 𝑑𝑖,𝑡 ⋅𝑄

𝐺
𝑖,𝑡

𝑤ℎ𝑒𝑟𝑒 𝐺 = {𝑠𝑢𝑏, 𝑃𝑉 ,𝑀𝑇 , 𝑆𝑉 𝐶}
(2)

s.t.
∑

𝑖∈𝐺
𝑃𝐺
𝑖,𝑡 −

∑

𝑖∈𝐹
𝑃𝐷
𝑖,𝑡 −

∑

𝑖∈𝐻
𝑃𝐴𝑔𝑔
𝑖,𝑡 − 𝑃 𝑙𝑜𝑠𝑠

𝑡 = 0 ∶ 𝜆𝑝𝑡 , ∀𝑡 ∈ 𝑇 (3)

∑

𝑖∈𝐺
𝑄𝐺

𝑖,𝑡 −
∑

𝑖∈𝐹
𝑄𝐷

𝑖,𝑡 −𝑄𝑙𝑜𝑠𝑠
𝑡 = 0 ∶ 𝜆𝑞𝑡 , ∀𝑡 ∈ 𝑇 (4)

𝑉𝑗,𝑡 = 𝑉1,𝑡 +
∑

𝑖∈𝐵
𝑍𝑝

𝑗,𝑖
(

𝑃𝑖,𝑡
)

+
∑

𝑖∈𝐵
𝑍𝑞

𝑗,𝑖
(

𝑄𝑖,𝑡
)

(5)

𝑉 min ≤ 𝑉𝑗,𝑡 ≤ 𝑉 max,∀𝑗 ∈ 𝐵, ∀𝑡 ∈ 𝑇 (6)

𝑃𝐺,min
𝑖,𝑡 ≤ 𝑃𝐺

𝑖,𝑡 ≤ 𝑃𝐺,max
𝑖,𝑡 ,∀𝑖 ∈ 𝑠𝑢𝑏, ∀𝑡 ∈ 𝑇 (7)

𝑄𝐺,min
𝑖,𝑡 ≤ 𝑄𝐺

𝑖,𝑡 ≤ 𝑄𝐺,max
𝑖,𝑡 ,∀𝑖 ∈ 𝑠𝑢𝑏, ∀𝑡 ∈ 𝑇 (8)

where 𝑃𝐷
𝑖,𝑡 and 𝑄𝐷

𝑖,𝑡, are fixed active and reactive load demand of
node 𝑖 at time 𝑡. Eqs. (3), (4) are the power balance constraints,
Eq. (5) is the voltage expression derived from linearized power flow
for distribution (LPF-D) [4]. Eqs. (6) and (7), (8) are the voltage
constraints and power outputs limits respectively. Other constraints are
omitted to conserve space. Details can be found in [32]. The third
level dispatches the optimal load aggregation to all residents by the
proposed priority list-based demand dispatching algorithm. The first
level minimizes residents’ electricity payment by optimizing aggregated
residential flexible load schedules according to the DLMP in the second
3

level. The second level clears the day-ahead distribution market and
integrate power losses and voltage constraints in the DLMP. Because
the first two levels are coupled, they are solved by reformulating it as
a single-level mathematical programming with equilibrium constraints
by Karush–Kuhn–Tucker optimality conditions and then mixed-integer
linear programming by the big-M method. Once the optimal aggregated
HVAC/electric vehicle schedule is obtained, the third level is solved to
dispatch all participating residents based on the aggregated schedule.

In research from Wang et al. [32], the objective of the market
clearing model is to minimize systems’ generation cost while satisfying
all the constraints. An appropriate pricing signal can efficiently guide
consumers’ load consumption and maintain economic operation of the
distribution system. Therefore, the major goal of this paper is to learn
the mapping between the given system profiles and optimal operating
decision, namely DLMP in this study. Specifically, correlated variables
in the optimization problem were taken as inputs and learn the depen-
dency between these variables and the optimal result through a neural
network. Neural networks have powerful learning abilities in approx-
imating complex and nonlinear relationships in various domains and
applications. Fig. 2 shows the schematic of the proposed data-driven
approach. Information related to the constraints of the optimization
problem, such as PV/DG capacity, PV/DG price, the amount of fixed
load, and the flexible load ratio, are fed into the DNN model to approx-
imate the appropriate DLMP. Based on the powerful learning ability
of DNNs, such a data-driven method, which focuses on the prediction
accuracy and the dependency between variables of the optimization
problem and the constraints, can be applied.

Fig. 2. Schematic of the data-driven approach.

3. Data-driven approach for DLMP

This section describes the proposed data-driven approach. The de-
tailed structure of the LSTM adopted in this study is presented, followed
by a modified network topology that enables the feasibility of the
proposed method on different distribution systems through transfer
learning.

3.1. LSTM-based learning approach

To obtain the day-ahead DLMP for given system conditions, a
data-driven approach using LSTM units is proposed. The method can
excavate the temporal correlation of the DLMP, and it builds and trains
a neural network to accurately predict the day-ahead DLMP with the
given distribution system conditions.

Fig. 3. LSTM cells and their internal structure.
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Recurrent neural networks with LSTM units are widely used for
time series prediction [33,34]. As shown in Fig. 3, LSTM units take
the form of a chain of repeating LSTM cells. The structure of LSTM
units are explicitly designed to learn long-term dependencies. Different
from standard recurrent neural networks, the repeating cell in the LSTM
network contains multiple interacting layers, which enables the LSTM
cells to include more information. In this figure, 𝜎 denotes a sigmoid
function, and tanh denotes a hyperbolic tangent function. Each LSTM
cell has three inputs: the input vector 𝑥𝑡, the cell state vector 𝐶𝑡−1 and
the output vector 𝑦𝑡−1, and two outputs 𝐶𝑡 and 𝑦𝑡. With the help of
cell state memory, LSTM units can selectively remember and forget
information. The previous output 𝑦𝑡−1 and the new input the 𝑥𝑡 are
concatenated and fed into the LSTM cell. The horizontal line in the top
of each cell carries information about the cell state which is the key
to LSTM units. LSTM can adaptively add and remove information to
the cell state by regulating different gates as shown in Fig. 3. These
gates are multiplicative units to determine the flow of information
into and out of cell activations based on importance. The importance
is determined by the weights that are adjusted during the learning
process. The forward pass of different gates in the LSTM cell can be
described through the following equations:
Forget gate:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (9)

Input gate:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10)

Output gate:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑜) (11)

Cell input:

𝐶𝑡 = tanh(𝑊𝑐 ⋅ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (12)

State update:

𝐶𝑡 = 𝑖𝑡 ∗ 𝐶𝑡 + 𝑓𝑡 ∗ 𝐶𝑡−1 (13)

𝑦𝑡 = 𝑜𝑡 ∗ tanh
(

𝐶𝑡
)

(14)

where 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜, 𝑊𝑐 and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜, and 𝑏𝑐 are the weight matrices
and the bias vectors that will be learned during the training process;
𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the gating vectors; 𝐶𝑡 is a vector of new candidate
state values; and ∗ represents the element-wise product of the vectors.
According to the bi-level optimization results from Eqs. (1)–(8), these
weights and bias of LSTM units will be trained based on the inputs
features of different nodes and the optimal DLMP results.

3.2. Rolling horizon

In practical applications, the uncertainty of the input parameters
must be considered. Some of the variables (e.g., the weather forecast
of the next 24 h ambient temperature) may not be accurate because
of random uncertainties. Therefore, the accuracy of the optimal 24 h
DLMP obtained from the LSTM model can be affected. To mitigate
the negative effect induced by the uncertainty or prediction error of
different input features, a rolling horizon updating method was applied.
For a sliding window with the size of 𝑘 hours, the inputs of the LSTM
model were updated at the beginning of every 𝑘 hours to predict the
24 h-ahead DLMP. To represent the uncertainty of the 24 h input
features, random prediction noise was added to several inputs. The
noise level was designed to increase with time which represents greater
uncertainty (inputs of the twenty-fourth hour usually have larger noise
than the previous hours).
4

3.3. Transfer learning

A major challenge to data-driven learning methods is the long train-
ing time and insufficient training data. And majority of learning-based
approaches cannot to be easily applied on a system with different topol-
ogy without retraining. Considering the practical implementation of the
proposed method on different distribution systems, transfer learning
was applied to the data-driven model. Transfer learning has been used
in various topics in the field of power system [35] such as reactive
power optimization, load forecasting, renewable resources power pre-
diction [36], carbon-energy combined-flow optimization [29]. Transfer
learning can help generalize learning models to different boundary
conditions, which significantly enhance the computational efficiency,
and the utilization of the transfer learning leads to an initial super-
convergence to a relatively low training error [28]. Another benefit of
transfer learning is that it functions well with a limited training data
set.

Fig. 4. Detailed network topology.

Although the basic LSTM framework can capture the time-varying
impacts of some inputs, the impact of spatial information needs to be
embedded so that the learning model can be adopted on a different
system model while sharing some common relations learned from the
other systems. The accuracy of the learning result will be affected if
these spatial relationships are ignored [37]. Such information includes
the locations of nodes and DGs. Because of the flexibility of the neural
networks, spatial and temporal correlation for the optimal DLMP, we
modify the commonly used LSTM to a topology-aware LSTM which
is suitable for transfer learning. In the proposed training model, an
additional layer was added to the LSTM model. The input features,
which are related to the network topology of the distribution system,
were directly fed into this new layer as shown in Fig. 4. When the target
system provides only limited data, the pretrained LSTM network from
a source distribution system can be used as a transferable model that
captures the time series behavior. Combined with the new topology
parameters from the target system, the pretrained weights of the LSTM
can be leveraged on the training of the target system through transfer
learning. This proposed neural network topology not only reduces the
amount of data required for implementing on a new system, but it
also reduce the training time by sharing the pretrained weights from
a source system.

The overview of the transfer learning approach is shown in Fig. 5.
The LSTM layers capture the relation of the time series inputs with
the output DLMP, and the linear layer captures the effect of topology
parameters of different systems on DLMP. When fine-tuning the weights
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Fig. 5. Overview of the transfer learning approach.

on a new distribution system without sufficient data, the weights inside
the blue dashed line are directly transferable. During transfer learning
for the target system, the model on the right freezes the weights of
the LSTM layers, which are directly copied from the model on the left
as shown in Fig. 5, keeping the information learned from the source
system. Then, the weights of the last layer (orange box) are trained
with limited data from a target system. The pretrained LSTM helps the
model to transfer the temporal features from the source system; the
fine-tuning of last layer helps the model to learn the spatial relation
between the topology features and the DLMP of the target system.

3.4. Performance metrics

The proposed approach to predicting temperature is a regression
method. Therefore, to evaluate the error, simulation results were used
as benchmark, The Root Mean Square Error (RMSE) between the
predicted value and the optimization result is calculated as shown in
Eq. (15).

𝐴𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=0

(

𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡 − 𝐴𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑡

)2
(15)

where 𝐴 is the metric of interest, and 𝑛 is the total number of samples.

4. Case studies

The overall training and testing workflow of the proposed data-

Fig. 6. The training and testing workflow.
driven approach is shown in Fig. 6. DLMP results from the optimization
5

Table 1
Inputs for different nodes.

Fixed load
PV/DG max power

PV/DG bidding price
Base voltage
Temperature

Flexible load ratio
Distance to the substation

Distance to DG
LMP

problem were passed to the DNN model for training and testing. The
performance of the proposed data-driven method was first tested on the
IEEE 33-bus distribution system. Next, the neural network model with
pretrained parameters was trained and tested on the IEEE 123-bus dis-
tribution system through transfer learning. Considering the uncertainty
of some inputs (e.g., LMP and outdoor temperature), the performance
of a rolling horizon method was examined. The improvement in terms
of training time and prediction accuracy through the proposed transfer
learning approach was also presented. Model training and validation
were preformed on an Intel i7-6700 CPU @ 3.60 GHz with 16 GB
memory. The neural network model was developed in Python 3.6 with
Pytorch.

4.1. Testing on the IEEE 33-bus distribution system

Fig. 7. Modified IEEE 33-bus system.

The topology of the IEEE 33-bus system is shown in Fig. 7. There
are two 500 kW PVs installed at node 12 and 28, and 2 500 kW micro
turbines located at nodes 18 and 33. The DGs are under the same
level of the aggregator, this work assumes that residential loads are the
main source of flexible load, behind-the-meter solar and DERs are not
included in the flexible load. In this case, the data were collected from
the optimization result of the simulation described in Section 2. There
are four sets of 7-day simulation data from four cases with different
flexible load ratios. Two sets of data were used for training the LSTM
neural network, and another two sets were used for testing. To prevent
overfitting, 20% of the training data were used for validation. The
input features are summarized in Table 1. The correlation map based
on the inputs data and DLMP is shown in Fig. 8. In general, we can
claim that the DLMP is mostly positive related with the base load, PV
generation, outdoor temperature, and LMP, while negatively related
with the voltage distribution in the baseline case. For the parameter
configurations of LSTM, grid search was applied for batch size and
learning rate selection. The mini batch size was set to 64, the learning
rate was set to 0.001, the LSTM had 128 hidden units, and the number
of fully connected layers was 3.
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Fig. 8. Correlation Map of inputs and DLMP.

4.2. LSTM testing results under different system load levels

The comparison of DLMP generated from the LSTM and original
optimization results is shown in Fig. 9. Each sub-figure shows the DLMP
for a different day during a 24 h time period. The DLMPs of different
days have similar durations of peak hours with different peak values.
The results show that the LSTM units can generate DLMPs for different
days that are very close to the OPF results from the optimization
solution.

Fig. 9. DLMP of different days generated from the LSTM model compared with the
OPF.

The profile of the difference between the DLMP generated from
the LSTM and optimization results is shown in Figs. 10 and 11. These
profiles show the prediction error of the LSTM model across all 33
nodes (buses) for 24 h of two test cases with PV generation and flexible
load ratios of 20% and 30%, respectively. All the errors are within 3%,
which demonstrates the accuracy of the proposed data-driven method.
The results also illustrate that the proposed method generalized well
on cases with different flexible load ratios.

4.3. Robustness testing results against uncertainty

As explained in Section 3.2, a rolling horizon updating method was
proposed to enhance the robustness of the learning-based algorithm,
where the inputs of the LSTM model are recursively updated at the
beginning of every 𝑘 hours. Many inputs features can be affected by
uncertainties such as weather and different PV output profiles as shown
in Fig. 12. To represent the uncertainties of different scenarios, random
6

Fig. 10. DLMP difference between LSTM and optimization result (20% flexible load).

Fig. 11. DLMP difference between LSTM and optimization result (30% flexible load).

prediction noise was added to several inputs such as fixed load, base
voltage, ambient temperature, and LMP.

Fig. 12. Different PV profiles.

To compare the performance with and without sliding window,
Monte Carlo simulations with random prediction noise were run to
input features. The prediction regions of the DLMP by the LSTM model
with different rolling horizon window sizes are shown in Figs. 13
and 14; the maximum applied noise on each input was 5% and 15%,
respectively. The blue lines are the optimal DLMP values from the OPF
solution. For different window sizes 𝑘, the DLMP prediction region
of different cases were formed by collecting the maximum and mini-
mum value across different trials at each hour. The results were also
compared with the method without a sliding window. The effect of
different levels of uncertainty on the DLMP is summarized in Table 2.
The mean absolute percentage error introduced by the uncertainty
can be significantly reduced by using a rolling horizon method. As
expected, the moving window with shorter window length (higher
update frequency) more effectively mitigated the effect of uncertainty
on prediction errors.
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Table 2
Effect of uncertainty with different sliding windows (mean absolute percentage error).

Maximum noise 3% 6% 9% 12% 15%

Without RH 2.6% 3.8% 5.0% 6.1% 7.2%
12 h RH 1.5% 2.0% 2.5% 3.0% 3.6%
8 h RH 1% 1.4% 1.7% 2.0% 2.4%
6 h RH 0.9% 1.1% 1.4% 1.6% 1.8%
4 h RH 0.7% 0.8% 1.0% 1.1% 1.3%

Fig. 13. Case 2: A simple 24 h prediction with different sliding window lengths with
5% maximum input noise.

Fig. 14. Case 3: A simple 24 h prediction with different sliding window lengths with
15% maximum input noise.

The gray regions in Figs. 13 and 14 are the possible regions of DLMP
values generated from the LSTM model without a sliding window. The
prediction result without the sliding window has obvious deviation
from the optimal DLMP value. The prediction region becomes wider
as the magnitude of input noise increases. With a smaller 𝑘 value,
the predicted DLMP values are more stable and are closer to the
optimal value. When 𝑘 is 4, the DLMP values stay in a narrow band
around the optimal value since the inputs are updated more frequently
with better accuracy. The results demonstrate the effectiveness of the
proposed rolling horizon method under the condition with uncertainty.
The average DLMP error across different nodes with different sliding
window sizes is shown in Fig. 15. Similarly, the error was maintained
at lower levels with smaller 𝑘 values.

4.4. Transfer learning on the IEEE 123-bus distribution system

The proposed method was further tested on a modified IEEE 123-
bus system. The network topology of the system is shown in Fig. 16.
Eight HVAC aggregators (H1–H8) and 8 electric vehicle aggregators
(E1–E8) were located at different nodes (buses) in the system as shown
in Fig. 16. Five simulation cases with different flexible load ratios are
described in Table 3.

The pretrained network using the IEEE 33-bus model was trained
on the IEEE 123-bus system with limited data as shown in Fig. 5.
The transfer learning model froze the weights of the other layers and
7

Fig. 15. The average DLMP error across different nodes with different sliding window
sizes 𝑘.

Table 3
Different cases.

Case System flexible Load composition

load ratio Flex Inflex Other

0 0% None H1–H8, E1–E8 Fixed load
1 10% H1–H2, E1–E2 H3–H8, E3–E8 Fixed load
2 20% H1–H4, E1–E4 H5–H8, E5–E8 Fixed load
3 30% H1–H6, E1–E6 H7–H8, E7–E8 Fixed load
4 40% H1–H8, E1–E8 None Fixed load

Fig. 16. Modified IEEE 123-bus system.

only trained the weights of the last layer, which are related to the
contribution of the spatial (network topology) features. The network
was tested on different simulation cases with PV generation and flexible
load ratios of 0%, 20%, and 40%. The difference of the DLMP generated
by the LSTM model compared with the optimization results is shown
in Figs. 17–20 with the various respective ratios. The distribution of
DLMP difference of different cases is demonstrated in Fig. 21. Based on
the simulation results in these different cases, the difference between
the DLMP generated by the neural network and the optimization results
is less than 2% most of the time. The results demonstrate the robustness
of the proposed neural network model. The mean absolute error of the
DLMP is as low as 0.15 $/MWh.
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Fig. 17. 3D profile of the DLMP difference between the LSTM and optimization results
on IEEE 123-bus distribution system through transfer learning (case with 0% flexible
ratio).

Fig. 18. DLMP difference between the LSTM and optimization results on IEEE 123-bus
distribution system through transfer learning, MAE: 0.15$/MWh (case with 0% flexible
ratio).

Fig. 19. DLMP difference between the LSTM and optimization results on IEEE 123-bus
distribution system through transfer learning, MAE: 0.2$/MWh (case with 20% flexible
ratio).

Figs. 22 and 23 show the detailed DLMP results comparison between
the learning-based approach and the optimization-based solution for
the IEEE 123-bus system under different system flexible load ratios at
10 a.m. and 7 p.m., respectively. The figures show that the DLMP is
higher at 7 p.m. for all three cases, and the learning-based approach
can predict the different DLMPs at different times of day. The overall
increasing trend of the DLMP across different nodes is well captured
8

Fig. 20. DLMP difference between the LSTM and optimization results on IEEE 123-bus
distribution system through transfer learning, MAE: 0.17$/MWh (case with 40% flexible
ratio).

Fig. 21. The DLMP percentage error distribution of different cases.

Fig. 22. DLMP of different cases at different nodes at 10 a.m. (RNN represents the
proposed transfer learning solution).

by the proposed transfer learning solution. Moreover, with the system
flexible load ratio as one of the input features, the proposed neural
network can generate DLMPs at different price levels for cases with
different flexibility. The RMSEs for 10 a.m., 7 a.m. and the whole 24 h
are summarized in Table 4.

To further evaluate the proposed learning model, the results of
different training scenarios were compared. Figs. 24–26 show the dis-
tribution of the error from different training options for the DLMP on
the IEEE 123-bus system. The results from Fig. 24 were generated by di-
rectly using the model trained on the 33-bus system. This model tended
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Fig. 23. DLMP of different cases at different nodes at 7 p.m. (RNN represents the
proposed transfer learning solution).

Table 4
RMSEs ($/MWh) of different cases.

Case 10 a.m. 7 p.m. Daily average

Case 0 0.197 0.154 0.177
Case 2 0.212 0.159 0.182
Case 4 0.184 0.169 0.153

Table 5
Comparison of prediction error for different training models (with and without transfer
learning).

Training model RMSE ($/MWh) R2

Model trained from the source system 3.253 0.888
Model trained on the target system with limited data 0.246 0.993
Transfer learning on the target system 0.164 0.997

to underestimate the DLMP values; larger deviation can be observed as
the DLMP value increases. This underestimation could be caused by the
system topology and scale difference from the source system and target
system. In Fig. 25, the model was trained with limited data from the
target system. Although it shows moderate error overall, a few outliers
exist. The performance of the model is limited by insufficient data.
Fig. 24 shows the results from the transfer learning model that trained
the weights of the last layer with limited data and kept the weights
of the other layer from the pretrained model on the source system.
This model generated the best results among the three training options.
To better understand the performance improvement across these three
figures, we added a violin plot Fig. 27, which captures statistics of the
prediction errors. As shown in Fig. 27, both the mean and standard
deviation are in a descent trend from the left to the right. And the
green one (using transfer learning technique) delivers notable accuracy
gains, which demonstrates the efficacy of the proposed method. As a
summary, detailed numerical numbers of the errors for each training
scenario is given in Table 5. It is obvious that, our proposed transfer
learning solution has achieved up to 95% RMSE reduction in predicting
the DLMP by transferring knowledge learned from another network
topology, even though there is only slight improvement on the R2 when
comparing transfer learning and direct training on the target system,
the RMSE is reduced significantly.

Finally, we want to illustrate the improvement in learning progress
through the proposed transfer learning technique. The convergence
process plot in Fig. 28 reveals three key findings: (1) the direct training
comes with much larger oscillation (red shaded area) than the proposed
transfer learning approach; (2) the direct training and transfer learning
approaches can generate decent results given the gap between two
methods vanishes at the end, and (3) the transfer learning method
delivers more than 5 times acceleration during the training process.
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Fig. 24. Model trained from the source system.

Fig. 25. Model trained on the target system with limited data.

Fig. 26. Transfer learning on the target system.

Compared with direct training on the target system with limited data,
the transfer learning method provides a warm-start point for the train-
ing, which significantly enhances the convergence speed and prediction
accuracy.
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Fig. 27. Violin plot of the errors from different training models.
Fig. 28. Comparison of training losses for direct training and transfer learning methods.

Table 6
Computation and training time.

Case Computation time (s) Training time (s)

Optimization Neural network Direct learning Transfer learning

33-bus system 20 0.124 1390
123-bus system 60 0.272 3630 640

4.5. Computation time

As shown in Table 6, compared with the benchmark optimization-
based method, the data-driven algorithm can significantly reduce the
computation time. More than 99% of computation time was reduced
for both the IEEE 33-bus and 123-bus systems. Additionally, the data-
driven method is more computational efficient in larger systems since
the computation time of the optimization-based method will increase
exponentially with an increasing number of nodes. The training time for
the 33-bus and 123-bus systems are 23 min and 1 h, respectively. With
transfer learning, training time can be reduced 82% for the 123-bus
system.

5. Conclusions

To address the scalability and practicability challenges in deploying
the DLMP in distribution network, we have proposed a learning-based
approach that realizes a data-driven distribution market mechanism
considering load and PV uncertainties. The framework features the
seamless integration of generally available utility data across the distri-
bution network, which makes it possible to deploy DLMP in real-world
distribution systems. The proposed approach combines LSTM and trans-
fer learning to develop deep neural network that can capture the
10
temporal dependencies of the time series inputs, as well as the spatial
patterns of the distribution network. This has led to dramatic deploy-
ment complexity reduction when the real-world network models are
not readily available for solving the corresponding optimal power flow
problem. Testing results on IEEE 33-bus and 123-bus systems show that
the proposed approach can generate a comparable DLMP (less than 5%
deviation) against the optimization solutions with up to 99% reduction
in computation time. In addition, several other adaptive and robust
techniques were integrated to make the data-driven solution ready for
more challenging scenarios, which include a sliding window method to
mitigate the uncertainty/noise in the prediction profiles, and transfer
learning to enable a quick deployment to other distribution networks.

This work points to a number of directions warranting follow-up
investigations. It is interesting to extend the current transfer learn-
ing technique to distributed multi-agent learning framework, which
can further reduce the communication and computation overhead. On
the other hand, the performance of learning-based solution can be
enhanced by exploring different DNN structures with various combina-
tions of distribution network topology, flexible load ratio, renewable
penetration ratio, etc. Last, particularization of the current design
to real feeders provides abundance of cross-disciplinary research op-
portunities, for example, state estimation and feature selection under
different system conditions.
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