

Grid Strength Assessment for High Levels of Inverter-based Resources in the Puerto Rico Power System

M. Bennett¹, Yilu Liu^{1,2}, A. Nassif³, M. Rahmatian³, X. Fan⁴, M. Elizondo⁴, Z. Jiang¹, V. Gevorgian⁵

¹University of Tennessee, Knoxville

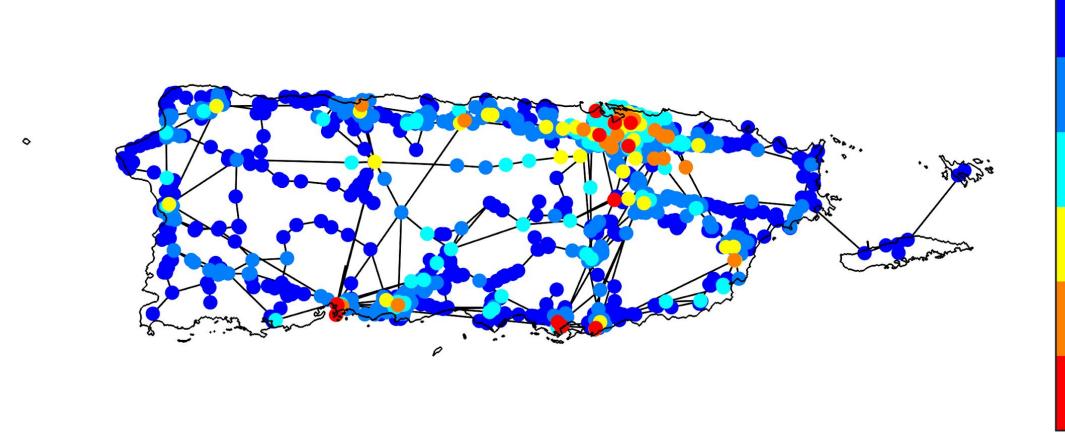
²Oak Ridge National Laboratory

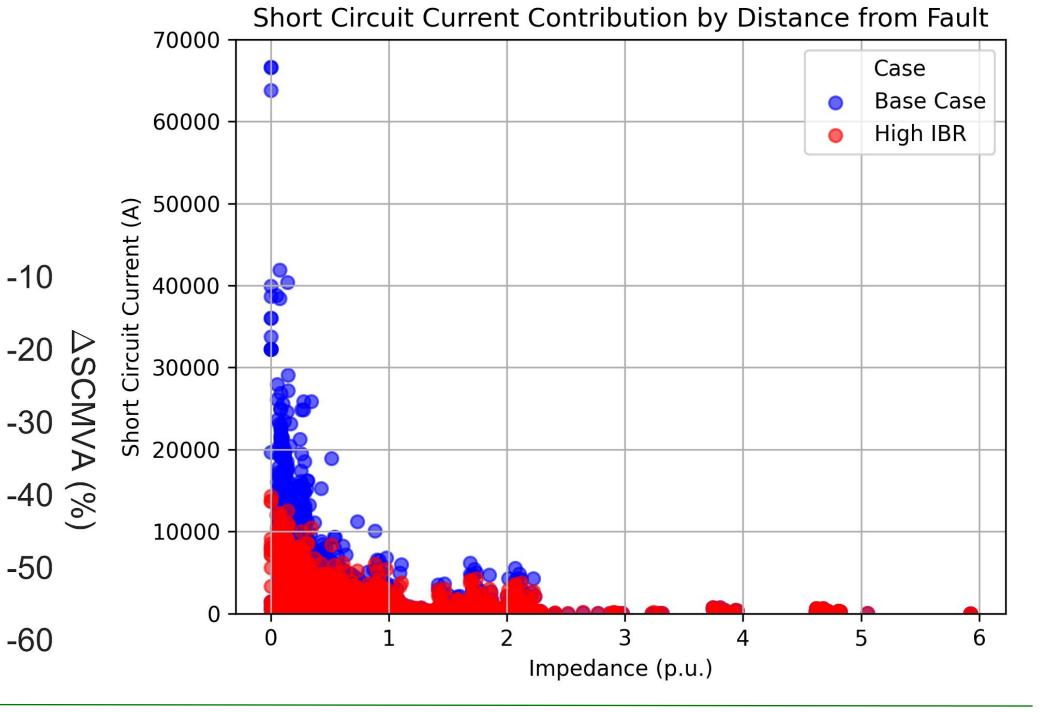
³LUMA Energy

⁴Pacific Northwest National Laboratory ⁵National Renewable Energy Laboratory

BACKGROUND AND MOTIVATION

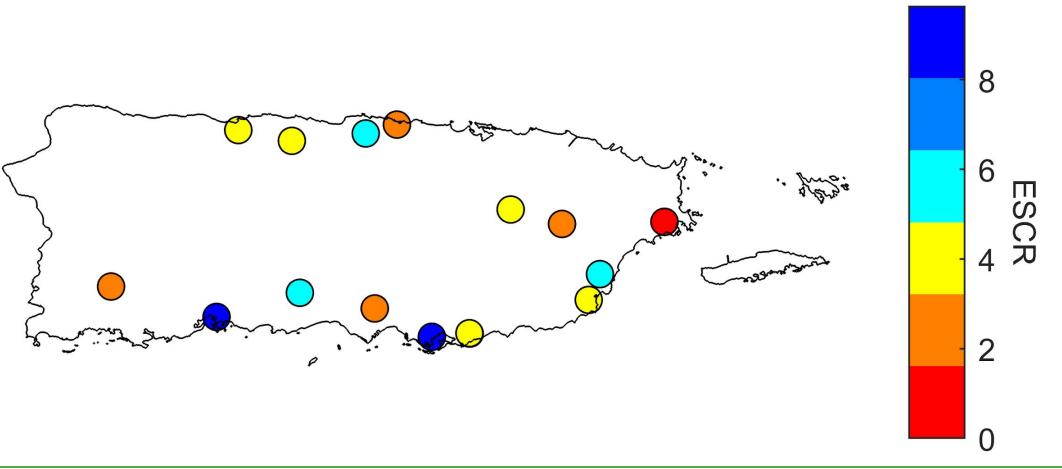
- Inverter-based resources (IBR) may soon become the dominant resource
- Fault current will decrease with higher IBR levels
- Conventional machines typically produce 5-10 times rated current while IBR produce 1-1.3 times
- This study discusses the change in short circuit capacity (SCMVA) due to high levels of IBR


CONCLUSION AND FUTURE WORK


- Existing protection systems may not operate with the lower available fault current
- Detailed study is needed at weak locations to assess other factors of stability
- Future studies will assess the location and capacity of synchronous condensers for improving grid strength

CASE STUDY 1: LOSS OF SHORT CIRCUIT CAPACITY IN 100% RENEWABLE SCENARIO

- Base case is 2% renewable; 100% renewable case replaces all conventional machines in base case with IBR
- 3-phase faults applied at every bus and fault current calculated per IEC 60909 standard
- Highest change in SCMVA concentrated along the high voltage transmission system
- Locations far from generators have low SCMVA and experience almost no change in SCMVA in a high IBR scenario

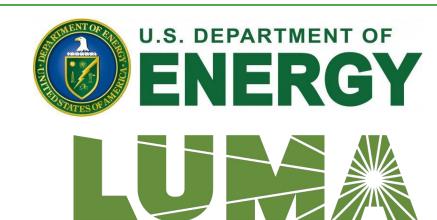


CASE STUDY 2: SHORT CIRCUIT RATIO IN BASE CASE WITH TRANCHE 1 PLANNED IBR

- Short circuit ratio study using 2021 validated base case with tranche 1 planned IBR without considering generation retirements
- Tranche 1 includes ~25 sites averaging 70 MW of capacity
- SCR considers local IBR impacts without contributions from other IBR
- ESCR considers other nearby IBR impacts to voltage
- WSCR considers regional IBR capacity impacts

SCR	ESCR	WSCR
$SCR_i = \frac{SCMVA_i}{MW_i}$	$ESCR_{i} = \frac{SCMVA_{i}}{MW_{i} + \sum IF_{ij} \times MW_{j}} IF_{ij}$	$= \frac{\Delta V_i}{\Delta V_j} \qquad WSCR = \frac{\sum_{i}^{N} SCMVA_i \times MW_i}{(\sum_{i}^{N} MW_i)^2}$

Equivalent circuit-based Short Circuit Ratio Tranche 1



Location	SCR	ESCR
Santa Isabel	8.19	2.43
Breñas	12.30	1.74
Aguirre	12.71	8.10
Juncos	15.61	3.08
Jobos	16.66	3.96
Barceloneta	16.90	3.71
Cambalache	20.41	4.55
Jobos	23.33	3.74
Yabucoa	26.19	5.41
San German	29.75	2.58
Bairoa	34.23	4.31
Juana Diaz	39.18	5.13
Costa Sur	39.79	9.63
Vega Baja	40.62	5.79
Daguao	46.77	1.49
Yabucoa	63.94	3.22
Regional Metric	WSCI	3
All Locations		1.947

Pacific Northwest

