

A Use-case Example: Transient Event Detection and Identification Demo on IEEE 123 Bus System

Yuqing Dong¹, Jin Dong², Boming Liu², Yilu Liu^{1,2} 1 The University of Tennessee, Knoxville 2 Oak Ridge National Laboratory

INTRODUCTION

- Objective: Develop algorithms for event detection and identification based on the OEDI Solar Systems Integration Data and Modeling (OEDI SI) library
- Methodology lacksquare
- Data generation: multi-scenario POW data in ATP-EMTP (free license)
- Data preprocessing: remove the initialization of EMT simulation
- Event detection: periodic waveform detector
- Event identification: (1) extract feature based on discrete wavelet transform

(2) classify the events by multiple machine learning algorithms

Data Generation

https://github.com/openEDI/oedisi-transient/tree/main/input

Transient Analysis Algorithms

Confusion matrix of SVM algorithm

Algorithm		Input	Output	0 -	162	0	0	- 140
	Data	Preprocessed feeder head						- 120
Detection		voltage/current waveforms	Detected event data period	bel				- 100
Detection			Delected event data period	m,	^	101	0	

Conclusion

- Use case 1 (transient data generation) provides a simple way to simulate large amounts of POW data by modifying multiple
- Steady states: loading condition/PV penetration
- Dynamic states: fault type/fault location
- Use case 2 (transient analysis algorithms) provides a benchmarking solution for lacksquare
- Event detection: can detect all fault events -
- Event identification: each algorithm can reach a high accuracy

