

Design of A 50-kW Medium Frequency Medium Voltage Transformer for 10-kV SiC-Based **Dual Active Bridge Converter**

Zihan Gao¹, Dingrui Li², Ruirui Chen¹, Hua Bai¹, Leon Tolbert¹, Fred Wang^{1,3} ¹ The University of Tennessee, Knoxville ² ABB US Research Center ³Oak Ridge National Laboratory

INTRODUCTION

- IO-kV SiC MOSFETs have enabled reduced stages & volume of medium voltage (MV) dc/dc converters and brought more challenges on the insulation design & parasitics control.
- Leakage integration in MV transformer eliminates the phase shift inductor but may introduce high loss due to leakage flux across the core lamination.
- Dry type insulation for MV winding brings challenges for transformer design.

MV TRANSFORMER DESIGN

Thin nanocrystalline cores are stacked to form the MV transformer.

Fig. 1: Structure of MV DAB transformer

50 kW

Power Rating

SIMULATION AND TEST VERIFICATION

- Transformer leakage inductance is simulated as 62 µH, with eddy current loss ~23 W.
- The proposed transformer has been assembled and tested in a MV Dual-Active-Bridge (DAB) converter up to rated voltage power bidirectionally.
- DAB converter efficiency >99%, peak efficiency 99.3% at 40 kW.

freq(1)=10 kHz	Surface: Cu	irr
	Surface, Cu	41

rent density norm (A/mm²)

Core	loss	Copper los	s 📃	Eddy loss	6	Conduc	tion 📃	S	witching
450	Ι	1 1	1		I	Г Г	Г		

CONCLUSION

- MV dc/dc transformer with stacked cores and geometry-based optimization can realize high efficiency and power density design.
- The analysis and test validate the transformer design with stacked transformer cores and dry type insulation.

