

Wide Area Oscillation Damping Control Using SVC As Actuator- Terna Case Study

Haozong Wang¹, Yi Zhao¹, Yilu Liu^{1,2}, Lin Zhu³, Evangelos Farantatos³, Salvatore Tessitore⁴ ¹ The University of Tennessee, Knoxville ² Oak Ridge National Laboratory, TN ³ Electric Power Research Institute, ⁴ Terna, Rome, Italy

Background & Introduction

- Low-frequency oscillations are significant issues that threaten power system security.
- To avoid the need for detailed dynamic models and parameters, researchers in the University of Tennessee, Knoxville developed a measurement-driven wide-area damping control (WADC) approach, in which data from Phasor Measurement Units (PMUs) are adopts for controller design.
- Widely used worldwide, Static var compensators (SVCs) have the potential to serve as an oscillation damping actuator.
- In this research, the design methodology of the WADC controller is transferred and applied to the scenario of SVCs to validate its feasibility, with the Terna grid serving as a case study.

SVC Short-term Dynamic Model with Fast-Override

• The model includes a filter block to model the measurement delay, a voltage regulator with a gain block to model the slope of the V-I characteristics of SVC, and a thyristor delay

Terna Case Study —— SVCs at different locations

• In all locations, SVCs demonstrate a positive effect on oscillation damping.

FO	$\Delta \Delta E$	

Measured Frequency

block.

- A fast override module is added to prevent the system from serious failure and voltage deviation exceeding the controllable limit value.
- Fast Override logic: If DV = 0, $DV_{LO} = B'_{MAX} / K_{SVS}$, $DV_{HI} = B'_{MIN} / KSVS$ If DV > 0, $DV_{LO} = DV$, $DV_{HI} = -DV$

Terna Case Study —— Single SVC vs Multiple SVCs

- Multiple SVCs show better performance compared to a single SVC.
- System's oscillation frequency varies with SVC. This phonomonon is more propounced in scenarios involving

Terna Case Study — Comparison Between SVCs And Condensers As Actuators

- The durations of oscillation are almost same, with condenser case slightly shorter.
- During oscillation, SVC case has a smaller amplitude,

phenomenon is more pronounced in scenarios involving multiple SVCs.

SVC Location	Gen1 Trip		Gen2 Trip	
	Freq (Hz)	DR (%)	Freq (Hz)	DR (%)
None	0.291	-0.267	0.292	-0.288
Location 2	0.220	33.0	0.232	26.3
Location 1 & 2	0.166	33.7	0.166	54.8
Location 2 & 3	0.176	35.4	0.110	61.4
Location 2 & 4	0.197	35.3	0.109	81.3
All 5 Locations	0.148	29.2	0.086	63.2

while condenser case has a smaller overshoot.

Conclusion & Future Works

- SVCs with WADC can effectively suppress the oscillations in the power grid caused by disturbances.
- The control effects of SVCs vary with different locations and quantities. A more detailed analysis is needed.
- In addition to simulations, this study also plans to conduct hardware-in-the-loop (HIL) testing and field experiments.

