

Real-time Inertia Estimation Tool Implementation Based on Probing Signals

Xinlan Jia¹, Zhihao Jiang¹, He Yin¹, Yi Zhao¹, Yilu Liu^{1,2}, Jiangkai Peng³, Andy Hoke³, Jin Tan³, Przemyslaw Koralewicz³, Emanuel Mendiola³, Ezequiel Hernandez⁴, Juan Bellido⁴, Kelsey Horowitz⁵, Aaron Madtson⁵, Brad Rockwell⁶, Cameron Kruse⁶ ¹ The University of Tennessee, Knoxville ² Oak Ridge National Laboratory ³ National Renewable Energy Laboratory

⁴ Green Power Technologies ⁵ The AES Corporation ⁶ Kauai Island Utility Cooperative

INTRODUCTION & BACKGROUND

What is power system inertia?

- A critical parameter in power systems that determines the system's ability to withstand disturbances and maintain stable operation.
- Provided by the rotating masses of synchronous generators and motor loads in tradition power grids. \bullet

Why do we need accurate inertia estimation?

- Increasing deployment of inverter-based resources (IBRs) \rightarrow Reduced system inertia
- Variable nature of renewable generation \rightarrow Amplified inertia fluctuations
- Knowing accurate inertia \rightarrow Secure grid operations and provide insights on artificial inertia contribution from the IBRs Why choose probing-based method for real-time inertia estimation?
- System inertia can be estimated in real-time and at grid operators' desire time by controlled probing injections.

PROBING-BASED INERTIA ESTIMATION METHOD & PHIL TEST RESULTS

The basic idea of probing-based inertia estimation is to utilize controllable inverters in the field to inject active power pulses into the grid and estimate system inertia using **frequency** measurements.

Figure 1. Frequency deviation during probing test

Two sets of estimation algorithms that based on system identification are developed:

1. <u>Inertia only estimation</u>: To estimate system inertia from SGs and provide insights on assessing the artificial inertia contribution from the IBRs. 2. Inertia + droop estimation: To estimate both the SGs' inertia contribution and the droop control of the IBRs.

	Case 1A	Case 1B	Case 1C	Case 1D	Case 2A	Case 2B	Case 2C	Case 3	Case 4
Inertia Ground Truth	102.046	97.5	86.347	90.847	102.046	102.046	102.046	187.233	187.233
Estimated Inertia without Noises	99.228	102.020	81.866	91.876	106.754	97.099	94.849	184.764	163.845
Estimated Inertia with Noises	105.28	99.30	90.07	88.97	92.511	94.273	105.372	191.184	211.319
Droop Ground Truth	/	/	/	/	8.486	6.422	4.009	8.775	16.553
Estimated Droop without Noises	/	/	/	/	8.400	6.773	3.653	9.099	16.466
Estimated Droop with Noises	/	/	/	/	8.208	6.095	3.848	9.046	16.886
Table 1 Inertia and inertia + droop estimation results on test cases with various online SCs & CEL IRPs & CEM IRPs									

(1000) estimation results on test cases with various online

PHIL TEST SYSTEM SETUP

CONCLUSIONS & FUTURE WORKS

PHIL test system with identical hardware and control as the actual Kauai Island power grid is being set up at the NREL Flatirons campus.

Figure 2. PHIL test system

- Four test scenarios with various combinations of online SGs and IBRs have been designed to validate the algorithms' accuracy and study the artificial inertia contributions from the IBRs.
- For the test scenario with only SGs online, the inertia lacksquareestimation algorithm can achieve an average estimation error of < 4% with or without noise impact.
- For the test scenarios with various IBRs online, the inertia lacksquare+ droop estimation can achieve < 8% average error for inertia and <4% average error for droop with or without noise impact. The inertia only algorithm can provide valuable insights in quantifying artificial inertia contribution.
- The future work will focus on actual KIUC field deployment.

