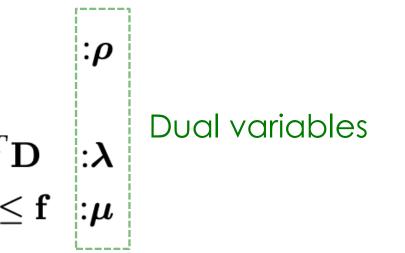
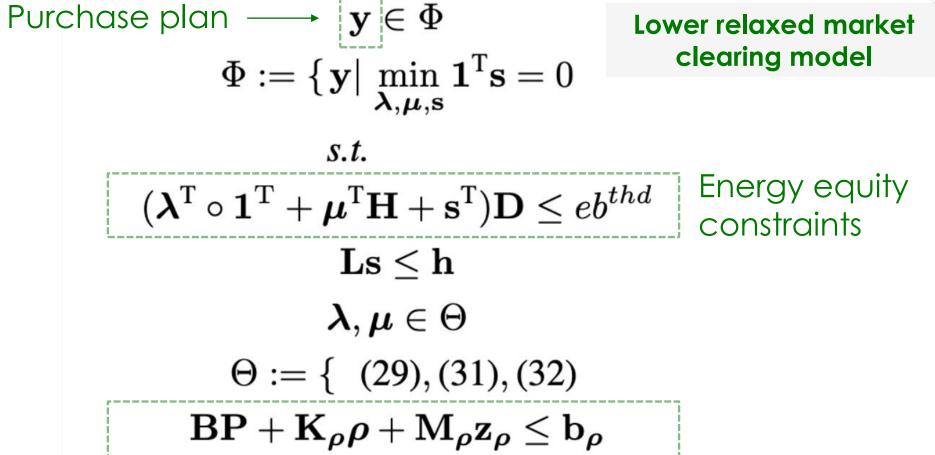

Towards Energy Equity in Interconnected Systems: An Energy Burden Criteria-Constrained Tie-line Scheduling Model


Sufan Jiang¹, Fangxing (Fran) Li¹, Xiaofei Wang¹, Chenchen Li ¹ The University of Tennessee, Knoxville


Background & Motivation

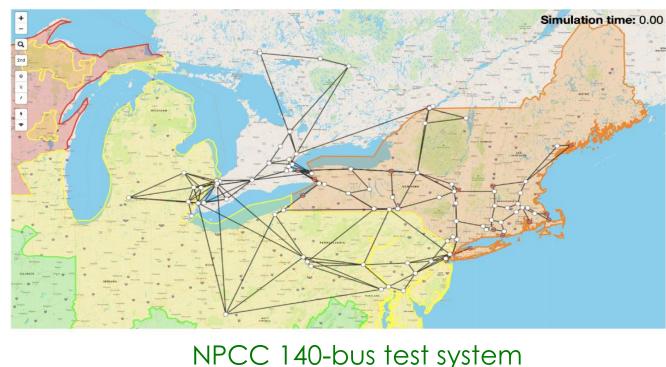
- > Energy equity requires the fair and just distribution of benefits in the energy system through intentional design of systems, technology, procedures and policies
- > Global circumstances, including geopolitical conflict, the COVID-19 pandemic, and world-wide inflation, have resulted in an energy crisis driving soaring energy prices
- > In interconnected systems, the tie-line schedule has a significant impact on the prices in each individual system, and consequently, also on energy burden for vulnerable households

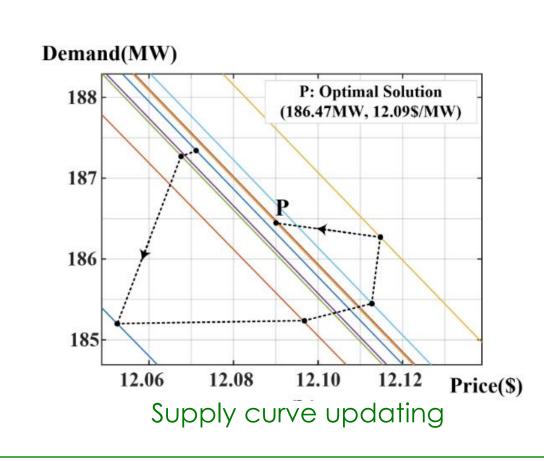
Problem Formulation $\min_{\mathbf{y},\mathbf{P}} \mathbf{a}^{\mathrm{T}}\mathbf{y} + \mathbf{c}^{\mathrm{T}}\mathbf{P}$



$$\Theta := \{ (29), (31), (32) \}$$
 $\mathbf{BP} + \mathbf{K}_{oldsymbol{
ho}} \rho + \mathbf{M}_{oldsymbol{
ho}} \mathbf{z}_{oldsymbol{
ho}} \leq \mathbf{b}_{oldsymbol{
ho}}$
 $\mathbf{Gy} + \mathbf{JP} + \mathbf{K}_{oldsymbol{\mu}} \mu + \mathbf{M}_{oldsymbol{\mu}} \mathbf{z}_{oldsymbol{\mu}} \leq \mathbf{b}_{oldsymbol{\mu}}$
 $\mathbf{c}^{\mathrm{T}} + oldsymbol{
ho}^{\mathrm{T}} \mathbf{B} + oldsymbol{\lambda}^{\mathrm{T}} \mathbf{1}^{\mathrm{T}} + oldsymbol{\mu}^{\mathrm{T}} \mathbf{J} = \mathbf{0} \} \}$
KKT conditions

Price signal В Α energy S-end R-end Purchase plan Feasibility cuts


$$\max_{\boldsymbol{\delta}, \boldsymbol{\varepsilon}, \boldsymbol{\varphi}, \boldsymbol{\gamma}, \boldsymbol{\eta}, \boldsymbol{\pi}, \boldsymbol{\sigma}, \boldsymbol{\zeta}} R = eb^{thd} \boldsymbol{\delta} + \mathbf{h}^{\mathrm{T}} \boldsymbol{\varepsilon} + \mathbf{d}^{\mathrm{T}} \boldsymbol{\varphi} + \left(\mathbf{1}^{T} \mathbf{D} - \mathbf{y}\right)^{\mathrm{T}} \boldsymbol{\gamma}$$


$$+ (\mathbf{f} - \mathbf{H} \mathbf{D} - \mathbf{G} \mathbf{y})^{\mathrm{T}} \boldsymbol{\eta} + (\mathbf{b}_{\boldsymbol{\rho}} - \mathbf{M}_{\boldsymbol{\rho}} \bar{\mathbf{z}}_{\boldsymbol{\rho}})^{\mathrm{T}} \boldsymbol{\pi}$$

$$+ (\mathbf{b}_{\boldsymbol{\mu}} - \mathbf{G} \mathbf{y} - \mathbf{M}_{\boldsymbol{\mu}} \bar{\mathbf{z}}_{\boldsymbol{\mu}})^{\mathrm{T}} \boldsymbol{\sigma}$$

s.t. $\mathbf{B}^{\mathrm{T}}\left(\boldsymbol{arphi}+oldsymbol{\pi}
ight)+\mathbf{1}\circoldsymbol{\gamma}+\mathbf{J}^{\mathrm{T}}\left(oldsymbol{\eta}+oldsymbol{\sigma}
ight)=\mathbf{0}$ $\mathbf{K}_{o}^{\mathrm{T}}\boldsymbol{\pi} + \mathbf{B}\boldsymbol{\zeta} = \mathbf{0}$ $\mathbf{D}\delta + \boldsymbol{\zeta} = \mathbf{0}$ $\mathbf{H}\delta + \mathbf{K}_{\boldsymbol{\mu}}^{\mathrm{T}}\boldsymbol{\sigma} + \mathbf{J}\boldsymbol{\zeta} = \mathbf{0}$ $\mathbf{D}\boldsymbol{\delta} + \mathbf{L}^{\mathrm{T}}\boldsymbol{\varepsilon} = \mathbf{1}^{\mathrm{T}}$

Case Study

eb^{thd} (\$)	S-end Cost(\$)	R-end Cost (\$)				Social
		Operation	Import	Subsidy	Total	Cost(\$)
47,000	111,540	66,412	45,874	0	112,286	177,952
45,000	111,540	66,412	45,875	0	112,287	177,952
43,000	118,300	59,932	53,907	0	113,839	178,232
41,000	126,980	52,133	64,761	0	116,894	179,113
39,000	131,560	48,284	70,468	706	119,458	179,844
37,000	131,560	48,284	70,467	2707	121,458	179,844

Conclusions

> The proposed model provides the guidelines for operators who need to implement Energy Burden principles, for the potential energy equity programs

Dual model

> Effectiveness of the proposed energy burden-constrained tie-line scheduling model is verified, and the sustainability of the Energy Burden implementation is validated in the model

