Fast Frequency Support Provided by Grid-Connected Photovoltaic with Supercapacitor System

Paychuda Kritprajun¹, Leon M. Tolbert¹, Nattapat Praisuwanan¹, Jingxin Wang¹, Elizabeth Sutton¹, Yunting Liu², Maximiliano Ferrari³
¹ The University of Tennessee, Knoxville ² The Pennsylvania State University ³ Oak Ridge National Laboratory

BACKGROUND

• Frequency regulation has become a challenge with higher integration of inverter-based resources (IBRs) in power grids.
 • Reduction in grid’s inertia → high rate of change of frequency (ROCOF).
 • Fluctuation in grid’s frequency.
 • Grid code requires IBRs to provide fast frequency support including inertia emulation and frequency regulation to power grids.
 • IBRs should be able to provide fast frequency support efficiently.
 • Power oscillations during the support due to high inertia coefficient with limited improvement of ROCOF.
 • Dynamics of IBRs during the frequency event should be investigated.

GRID-CONNECTED PV WITH SUPERCAPACITOR SYSTEM (PVSS)

OBJECTIVE

• Demonstrate the PVSS dynamics during frequency events on the hardware testbed (HTB).
 • Frequency drop and frequency recovery.
 • Investigate the inertia responses based on different inertia coefficients (k\textsubscript{iner}).
 • Maximize the inertia support while reducing power oscillations during the event.

TECHNICAL APPROACHES

• Change of k\textsubscript{iner} to reduce power oscillations.
 • Bang-bang control to provide fast frequency recovery.
 • Calculate ROCOF based on the moving average.
 • The change in active power reference (ΔP\textsubscript{fre}) during grid frequency support:
 \[ΔP_{fre} = k_{iner} \cdot ROCOF + k_f \Delta f \]
 \[\Delta f: \text{the change in frequency during the disturbance.} \]
 \[k_{iner}: \text{inertia control loop coefficients.} \]
 \[k_f: \text{frequency control loop coefficients at 0.5 for all tests.} \]

EXPERIMENTAL EMULATION

Frequency dynamics based on different k\textsubscript{iner}

Change of k\textsubscript{iner} during the event

Frequency recovery based on bang-bang control compared to traditional control

CONCLUSION

• Demonstrate the PVSS dynamics during fast frequency support on HTB.
 • Investigate the response of the PVSS based on different inertia coefficients.
 • Reduce power oscillations of high k\textsubscript{iner} to improve SC utilization during the event.
 • Improve frequency recovery by adopting bang-bang control.

FUTURE WORK

• Improve the frequency dynamics during the recovery period.

Table I. PVSS's Parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC energy capacity</td>
<td>0.35 kWh</td>
<td>SC power capacity</td>
<td>63.18 kW</td>
</tr>
<tr>
<td>PV power rating</td>
<td>50 kW</td>
<td>Inverter power rating</td>
<td>55 kVA</td>
</tr>
</tbody>
</table>

SC CONTROL

- Higher k\textsubscript{iner} improves the ROCOF.
- Power oscillations of high k\textsubscript{iner} provide no improvement of ROCOF.

Change of k\textsubscript{iner} during the event

- Reduce power oscillations by changing k\textsubscript{iner} to be low value when the ROCOF is getting close to 0 Hz/s during the support.

Frequency recovery based on bang-bang control compared to traditional control

- Faster frequency recovery with bang-bang control (injecting power during the frequency recovery period).