Discrete Electromechanical Oscillation Control (DEOC)

Sebastian Martinez-Lizana, Héctor Pulgar-Painemal
The University of Tennessee, Knoxville
smart118@vols.utk.edu, hpulgar@utk.edu

Main idea
- Use controllable components to change the dynamical trajectory of an oscillatory behavior by injecting/absorbing active power through step-wisely controlled elements.
- Restore the initial equilibrium point at a determined time to significantly reduce the oscillation amplitude.
- Three main variables to determine:
 \(\Delta P \): to switch the eq. point form \(x_e \) to \(x_c \)
 \(t_{on} \): to activate the switched operation
 \(t_{off} \): to deactivate the switched operation

Projections

Switching Conditions

Validation

Remarks
- DEOC in multi-modal systems
 Progressive mode annihilation based on projections is used to handle multiple dominant modes.
- Proof of concept
 Simulations have shown effective reduction of oscillation amplitude.
- Subset of controllable components
 Injection/absorption of active power at some selected buses suffice to handle oscillations.

References