

Discrete Electromechanical Oscillation Control (DEOC)

Sebastian Martinez-Lizana, Héctor Pulgar-Painemal The University of Tennessee, Knoxville <u>smart118@vols.utl.edu</u>, <u>hpulgar@utk.edu</u>

Main idea

- Use controllable components to change the dynamical trajectory of an oscillatory behavior by injecting/absorbing active power through step-wisely controlled elements.
- **Restore the initial equilibrium point** at a determined time to significantly reduce the oscillation amplitude.
- Three main variables to determine:

 ΔP : to switch the eq. point form x_e to x_c t_{on} : to activate the switched operation t_{off} : to deactivate the switched operation

Switching Conditions

Validation

Remarks

DEOC in multi-modal systems

Progressive mode annihilation based on projections is used to handle multiple dominant modes.

Proof of concept

Simulations have shown effective reduction of oscillation amplitude.

Subset of controllable components

Injection/absorption of active power at some selected buses suffice to handle oscillations.

References

[1] S. Martinez-Lizana and H. Pulgar-Painemal, "Addressing grid nonlinearities in discrete electromechanical oscillation control," in 2023 North American Power Symposium (NAPS), 2022, pp. 1–6.

[2] H. Pulgar-Painemal and S. Martinez-Lizana, "On the Search for Expanded Grid Control Capabilities: Discrete Control on Emerging Power Technologies," in IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 984-987, Jan. 2023.

[3] S. Martinez-Lizana and H. Pulgar-Painemal, "*Further advances on discrete electromechanical oscillation control*," in 2022 North American Power Symposium (NAPS), 2022, pp. 1–6.

THE UNIVERSITY OF TENNESSEE KNOXVILLE

