

Automated Conversion from DC Dispatch to AC **Power Flow**

Samuel N Okhuegbe¹, Adedasola A Ademola^{1,2} and Yilu Liu^{1,3} ¹ The University of Tennessee, Knoxville ² Dominion Energy Virginia ³ Oak Ridge National Laboratory

BACKGROUND

- Power flow computations are fundamental to many power ulletsystem studies.
- The solutions serve as a base in performing other power \bullet system studies such as transient and voltage stability studies.
- Obtaining a converged power flow case is not a trivial task \bullet especially in large power grids due to the non-linear nature of the power flow equations
- Newton-Raphson is very sensitive to the initial conditions (voltage magnitude and angle estimates).
- A machine learning initializer based on random forest is • designed to provide better initial voltage magnitude and angle guesses towards achieving power flow convergence.

Fig 1: Generation of 8761 Hourly Dispatch Power Flow Cases

METHODOLOGY

Fig 2: Model Training Setup

DATA BREAKDOWN

Parameter	Power Flow Cases
Total Cases	8,761
Training / Validation Cases (converged)	4,376 / 486
Testing (non-converging)	3,899

CONCLUSION

- A machine learning was used to predict ulletthe initial voltage/angle guesses to initialize Newton-Raphson power flow.
- developed Random Forest The initializer successfully converged 2,106 which did power flow cases not originally converge due bad to initialization.

Fig 3: Proposed Framework for Machine Learning Initializer

RESULTS

Parameter	Random Forest Initializer	Decision Trees Initializer	DCPF Initializer	Linear Regression Initializer
Total (Initial Non-Converged	3,899	3,899	3,899	3,899
Power Flow Cases)	Cases	Cases	Cases	Cases
Power Flow Cases Converged	2,106	1,783	758	246
by Initialization	Cases	Cases	Cases	Cases
Percentage (%) of Cases Solved by Initialization	54.01%	45.73%	19.44%	6.31%
Remaining Non-Converged Power Flow Dispatch Cases	1,793 Cases	2,116 Cases	3,141 Cases	3,653 Cases

Random Forest initializer The performed better when compared with popular analytical methods like DC Power Flow (DCPF) initialization which is used in industry.

FUTURE WORK

- Retraining the model with more data and varying topology configurations could provide further insights and improve the success rate of the model.
- The capabilities of physics based deeplearning initializers need to be further investigated and compared with already established machine learning methods.

