

A Study on Predicting Angle Instability in Power System using High-Order Derivatives Method

Woo Yeong Choi¹, Yilu Liu^{1,2} ¹ The University of Tennessee, Knoxville ² Oak Ridge National Laboratory, TN

Background

- Analysis method needed for prediction of angle instability in power system, rather than post-event prediction.
- High-order derivative methods applicable in fields predicting dynamic characteristics by mathematizing physical dynamics.
- Preliminary research conducted on angle instability assessment for large-scale power systems application

Conclusion and Future Works

- Verification of 100% proactive instability prediction in potential line-fault scenarios in the grid.
- Refinement needed for prediction based on PMU data or methods such as data filtering for practical grid environments.
- Future research will focus on feasibility assessment in ulletlarge-scale grids with significant renewable energy integration, such as WECC and ERCOT system.

Case Study#1: Instability Prediction for System Single Line-Faults Scenario

Test system: IEEE 118 benchmark model. - System size: 3.94 GW

- On-lined Gen.
- Comparison of dynamic characteristics based on ${\color{black}\bullet}$ phase planes for stable and unstable conditions.
- Verification of angle instability prediction results.

Case Study#2: Expanded Angle Instability Prediction Results

- Total simulation cases: 175 lacksquare(Cases with instability during line-fault: 105)
- Prediction Evaluation: lacksquare
- Verification of 100% instability prediction
- KPI based Evaluation

MAPE:
$$\frac{100\%}{n} \sum \frac{|A_t - F_t|}{A_t} = 6.343\%$$

MAE: $\frac{1}{n} \sum |A_t - F_t| = 0.107$
RMSE: $\sqrt{\frac{1}{n} \sum |A_t - F_t|^2} = 0.125$

