

Coordination of Damping Controllers: A Data-Informed Approach for Adaptability

Francisco Zelaya-Arrazabal¹, Hector Pulgar-Painemal¹, Jingzi Liu¹, Fangxing Li¹, Horacio Silva-Saravia² ¹ The University of Tennessee, Knoxville ² Electric Power Group

MOTIVATION

- The increased penetration of new technologies has heightened the variability of the grid, impacting the efficiency of damping controller (DC) devices. New adaptable approaches are necessary.
- Current adaptable WADCs face some challenges, such as dependency on up-to-date models for model-based approaches and security constraints for real-time fine-tuning in the case of data-driven approaches.
- How can inverter-based resources (IBR) be optimally used as DC only when necessary?

COORDINATION OF DAMPING CONTROLLERS

The coordination seeks the on/off switching combination of all DCs that best improves grid damping for the current operating condition and disturbance. This is achieved by identifying the coordination that minimizes the total action, a metric based on the kinetic energy released by synchronous generators.

Optimal controller coordination

IBR	actuators	N İ
		1
$\mathbf{A} P_{ref,1}$		- - -
· 		

DATA-INFORMED COORDINATION

To achieve coordination, a deep neural network is trained as a total action function approximation algorithm. This network learns the nonlinear relationship between inputs, DC combinations, and total action.

EVALUATION

Frequency comparison for different control scenarios. Frequency at bus: (a) 117, (b) 14, (c) 161, and (d) 69.

at bus: (a) 157, and (b) 69.

TABLE II: TA reduction per control scheme

	Short-circuit at bus 157		Short-circuit at bus 69	
Coordination	Total Action	Reduction (%)	Total Action	Reduction (%)
No DC	1.241	-	0.840	-
FC	0.998	19.60	0.998	-18.79
DIC	0.328	73.53	0.295	64.87
MBC	0.500	59.72	0.473	43.65

REMARKS

- The results show that adaptability can be achieved by using a DNN as a switching law to find the combination that minimizes TA.
- It is not necessary to consider all possible disturbances and operating conditions; a carefully selected subset has been proven to be sufficient for generalization.
- The computational time of the coordination is 78 ms per 1,000 tests.
- Coordination allows for the efficient use of IBR as DC.

REFERENCES

- Zelaya-Arrazabal, F., Pulgar-Painemal, H., Liu, J., Li, F., & Silva-Saravia, H. (2023). Coordination of Damping Controllers: A Data-Informed Approach for Adaptability. arXiv preprint arXiv:2312.07739.
- Zelaya-Arrazabal, F., Liu, J., Zhao, J., Pulgar-Painemal, H., Li, F., & Silva-Saravia, H. (2022, October). Data-driven adaptive dynamic coordination of damping controllers. In 2022 North American Power Symposium (NAPS) (pp. 1-6). IEEE.

