Hybrid Distribution Optimal Power Flow

Introduction

- The penetration of PV generation in distribution systems is growing rapidly.
- Distribution Optimal Power Flow (D-OPF) aims to determine the optimal control of all devices in distribution system.
- The contribution is to develop cutting-edge voltage control algorithms that have satisfactory control performance in presence of high penetration of fast-varying renewable generation.
- Hybrid-D-OPF that integrates the physics-based approach with learning-based approach can offer promising avenues for real-time online control.

Hybrid D-OPF Framework

- Hybrid D-OPF algorithms developed in Python, distribution network model built in OpenDSS.
- OpenDSS interacts with Python via Opendssdirect.py, optimal results are stored for learning-based approaches.
- The objective of Hybrid D-OPF is to regulate the bus voltages in the allowed range while minimize power losses.
- Performance of Hybrid D-OPF algorithms is evaluated by simulations on IEEE-123 benchmark system.

Simulation Results

- Bus voltages are regulated in the allowed range [0.95, 1.05] by the Hybrid D-OPF algorithms.
- PV inverters operate at MPPT mode, active/reactive power output constrained by PV inverter capacity.

Conclusion

- The proposed Hybrid D-OPF can successfully remove voltage violations and regulate bus voltages in the allowed range.
- The safe and reliable operation of DN can be guaranteed by the proposed algorithm.