Optimization Methods for the Unit Commitment Problem

Jim Ostrowski

Industrial and Systems Engineering
University of Tennessee jostrows@utk.edu
The Unit Commitment Problem

- The Unit Commitment (UC) problem is a large scale MINLP that finds a low-cost generating schedule for power generators.

- These problems have quadratic objective functions, and transmission constraints can be highly nonlinear. We are going to ignore transmission in this talk!

- These problems are typically solved as mixed integer programs.
Mixed Integer Linear Program

A *mixed integer linear program* is defined as:

\[
\begin{align*}
\text{max } & \quad cx + hy \\
\text{s.t. } & \quad Ax + Gy \leq b \\
\text{ } & \quad x \geq 0 \quad \text{integral} \\
\text{ } & \quad y \geq 0
\end{align*}
\]

where \(G\) is an \(m \times p\) matrix and \(y\) is a \(p\)-vector.

We call \(S := \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b\}\) of feasible solutions is called a *mixed integer linear set*.

A *mixed 0/1 set* just restricts the \(x\) variables to be either 0 or 1.

The linear relaxation is given by allowing \(x\) to take continuous values:

\[
P_0 := \{(x, y) \in \mathbb{R}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b\}
\]
Methods For Solving Integer Programs

- More notation:

 \[
 \text{MILP: } \max \{ cx + hy : (x, y) \in S \}
 \]

 where

 \[
 S := \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b \}
 \]

 Let \((x^*, y^*)\) be the optimal solution to MILP and let the objective value be \(z^*\)

- Let \(P_0\) be the linear relaxation of \(S\). Let \((x^0, y^0)\) be the optimal solution (with solution value \(z^0\)) to:

 \[
 \max \{ cx + hy : (x, y) \in P_0 \}
 \]

- Since \(S \subseteq P_0\), we know that \(z^* \leq z_0\), so the linear relaxation gives us an upper bound.
What if x_0 is fractional? Branch and Bound

- Suppose you solve the LP relaxation and the x solution is fractional? Say x_j^0 is fractional (say $f := x_j^0$). Define sets:

$$S_1 := S \cap \{(x, y) : x_j \leq \lfloor f \rfloor\}, \quad S_2 := S \cap \{(x, y) : x_j \geq \lceil f \rceil\}$$

- Every integer solution is in one of S_1 or S_2. So, the best solution to:

\[
\text{MILP1: } \max \{cx + hy : (x, y) \in S_1\} \quad \text{MILP2: } \max \{cx + hy : (x, y) \in S_2\}
\]

is equal to that of MILP.
Branch and Bound

Similar to S, create:

$$P_1 := P_0 \cap \{(x, y) : x \leq \lfloor f \rfloor\}, \quad P_2 := P \cap \{(x, y) : x \geq \lceil f \rceil\}$$

and look at

$$\text{LP1: } \max \{cx + hy : (x, y) \in P_1\} \quad \text{LP2: } \max \{cx + hy : (x, y) \in P_2\}$$
More B&B

- Suppose LP\(_i\) is infeasible. Then \(S_i \subseteq P_i = \emptyset\). This subproblem is pruned by infeasibility.

- Let \((x^i, y^i)\) be the optimal solution to LP\(_i\) with objective \(z_i\).
 - If \(x^i\) is integer, then \((x^i, y^i)\) is the optimal solution to MILP\(_i\). Node \(i\) is pruned by integrality. Since \(S_i \subseteq S\), then \(z_i \leq z^*\), so \(z_i\) is a lower bound for MILP.
 - If \(x^i\) is not integer and \(z_i\) is smaller than the best known integer solution, then \(S_i\) cannot contain a better solution, we prune \(i\) by bound.
 - If \(x^i\) is not integer and \(z_i\) is better than the best known lower bound, then \(S_i\) may still contain an optimal solution to MILP. Find a fractional component of \(x^i\), \(x^i_j\), and let \(f = x^i_j\). Define sets:

\[
S_{i_1} := S \cap \{(x, y) : x_j \leq \lfloor f \rfloor\}, \quad S_{i_2} := S \cap \{(x, y) : x_j \geq \lceil f \rceil\}
\]
Drivers of Computational Performance for Integer Programming in General

- Looking at the branch-and-bound algorithm, we can identify 3 key drivers of performance:
 - Quality of upper bound: Better formulations can reduce the LP bound, leading to more pruning.
 - Quality of incumbent solution: The sooner you find good solutions, the quicker you can prune nodes.
 - Number of integer variables: more integer variables can (possibly) lead to more branches and larger trees.
Impact of Optimization on UC

- Integer programming has only gained popularity in the past 10-15 years.
- Before that, Lagrangian relaxation methods were used to find decent solutions to these scheduling problems.
- The switch paid off. MISO schedules more than 1,500 power plants throughout the Midwest and Canada.
- Switching to IP saved them between 2.1 and 3.0 billion dollars from 2007 to 2010
- This won them the prestigious Edelman Award from INFORMS
- Since then, we have gotten a lot better at solving these problems!
The Basic Problem

The UC Problem

Minimize \[\sum_{t \in T} \sum_{j \in J} c^j(p^j_t) \]

subject to

\[\sum_{j \in J} p^j_t \geq D_t, \quad \forall \ t \in T \]

\[p^j \in \Pi^j, \quad \forall j \in J. \]

- \(c(p^j_t) \) gives the cost of generator \(j \) producing \(p^j_t \) units of electricity at time \(t \).
- In every time periods, demand \(D_t \) must be met.
- Each generator must work within its physical limits (ramping constraints, minimum shut down times, etc.).
Physical Constraints of Generators

- **Convex Production Costs**
- **Minimum & Maximum Output Levels:** If the generator is on, it must produce between P and \bar{P} units of power.
- **Ramping Constraints:** Power output cannot change too rapidly over a short period of time.
- **Minimum Up (Down) Time:** When a generator is turned on (off), it must stay on for at least UT (DT) time units.
- **Downtime Dependent Startup Costs:** The cost of turning on a generator is dependent on how long the generator has been off.
Basic Approach

- A strategy employed by many researchers is to investigate tight formulations for a generic generator, i.e., tight descriptions of Π.
- This work will employ the same tactic.

Main Result:

We will give a tight and compact (convex hull) description of the feasible operating schedule of a generator. Moreover, this description is fairly flexible and can enable a variety of additional physical constraints.
Why This Approach?

- Integer Programs are best solved by looking at the linear relaxation.
- The *convex hull* of an IP is the smallest polyhedron containing all of the feasible points.
- The worse the linear relaxation resembles the convex hull, the harder the problem is to solve.
A Brief Outline

- First, we will discuss some previous work on polyhedral results related to electric generator schedules.
- Then, we will move into more general polyhedral theory and present an extension of Balas' classical theorem.
- Lastly, we will tie the two together to give our compact convex hull result.
Polyhedral Results for Generator Scheduling

“1-binary variable model”

- I can write the feasible region of a generator using two variables per time period.
- Let p_t be the (continuous) variable representing power output.
- Let u_t be the (binary) variable representing if the generator is on/off.
- The convex hull description of this polyhedron is known if there is no ramping constraint, but it is large (exponential).
What is a cutting-plane method?

- If the solution to the linear relaxation is outside of the convex hull, add a linear constraint that will remove it from the relaxation.
3 Binary Variable Model

3-Bin

- Now we use 4 variables per time period:
- Let p_t be the (continuous) variable representing power output.
- Let u_t be the (binary) variable representing if the generator is on at time t.
- Let v_t be the (binary) variable representing if the generator is turned on at time t.
- Let w_t be the (binary) variable representing if the generator is turned off at time t.

- Yes, the additional variable are redundant. But, they allow us to write tight descriptions of the polytope \textit{with no ramping constraints} (Rajan & Takriti: 2005).
Not Quite the Same Thing, but Nice

- A slightly different approach to generator scheduling comes from Frangioni and Gentile, who solve the single unit commitment problem (1UC) in polynomial time using dynamic programming.
 - The 1UC model assumes prices are fixed, then optimizes a single unit’s profit.
- The trick: Since the prices are known, it is easy to compute the exact production schedule at times in the interval $[a, b]$ if is is known for sure that the generator turns on at time a and then shuts down at time b (Economic Dispatch Problem).
- There are at most Tc^2 many valid turn on/turn off time intervals, so you only need to consider combining the corresponding production schedules, where the only constraint is the minimum downtime constraint.
Economic Dispatch Problem

- If it is known that the generator is turned on at a and off at b, the profit during this time period is solved via the linear program:

$$\begin{align*}
 p_{i}^{[a,b]} & \leq 0 & \forall i < a \text{ and } i > b \\
 -p_{i}^{[a,b]} & \leq -P & \forall i \in [a, b] \\
 p_{i}^{[a,b]} & \leq \min(P, SU + (i - a)RU, SD + (b - i)RD) & \forall i \in [a, b] \\
 p_{i}^{[a,b]} & \leq p_{i-1}^{[a,b]} \min(RU, SU + (b - i)RD - P) & \forall i \in [a + 1, b] \\
 p_{i-1}^{[a,b]} & \leq p_{i}^{[a,b]} + \min(RD, SU + (i - a)RU - P) & \forall i \in [a + 1, b].
\end{align*}$$
An Aside: Shortest Path Problem

- The shortest path problem attempts to find the shortest path between two given nodes on a graph.
- This can be solved very easily (Dijkstra’s Algorithm).
A Dynamic Programming Approach to 1UC

- The 1UC model is solved via a shortest path problem in the following digraph:
- Let s be the source node, t be the sink node.
- Let $v_{[a,b]}$ represent the action of turning on the generator at time a and shutting it off at time b. The cost of going through node $v_{[a,b]}$ is equal to negative the profit from the economic dispatch problem.
- There is an arc leaving (entering) s (t) and entering (leaving) every other vertex.
- Arc $(v_{[a,b]}, v_{[c,d]})$ exists if $b + \text{mindowntime} \leq c$.
- Digraph is acyclic, shortest path is easily found.
An Example: Min Up/Downtime=5
Remarks:

- The dynamic programming approach to 1UC is a fantastic result, but it hasn’t been very helpful for multi-generator models.
- Why? The DP only considers Tc2 specific schedules, not all possible production schedules. There hasn’t been an obvious way of extending this idea to more general methods.

Fundamental Problem:
Consider any shortest path problem where edges & vertices represent actions represented by polyhedra. How do you efficiently represent the set of feasible solutions? To answer this question, we revisit a classic polyhedral result.
Balas and the Union of Polyhedra

Theorem

Consider m bounded polyhedra $P_i := \{x \in \mathbb{R}^n \mid A^i x \leq b^i\}$. Define $P = \text{conv}(\bigcup_{i \in [m]} P_i)$. Then the polyhedron

$$Y = \left\{ \begin{array}{l}
A^i x^i \leq \gamma_i b^i, \ i \in [m] \\
\sum_{i \in [m]} x^i = x \\
\sum_{i \in [m]} \gamma_i = 1 \\
\gamma_i \geq 0, \ i \in [m]
\end{array} \right\}$$

provides an extended formulation of P. So, projecting Y back down to the original variables gives you P.

It is a lot of math, but the basic idea is that it tells you how to find the smallest polyhedron that contains 2 or more polyhedra.

It allows you to model “My solution can satisfy this set of equations or that set of equations.”

In the context of our dynamic program, it allows you to model the situation where you can pick a solution from 1 (and only 1) Economic Dispatch polyhedron.

This is not sufficient, since we might want to be on in 2 or more intervals!

Instead, we need to consider sums of polyhedra.
What do I mean by sums?

- Think of polyhedra as bins. I want to construct a solution in \mathbb{R}^n by grabbing vectors in each of the P_is.
- I can assume that I do not grab two or more unique vectors from a single bin.
- The γ terms represent the weight of each of my vectors.
- The set of γ terms are constrained (must be in Γ).
- Investigate $S := \{ \sum_{i=1}^{m} \gamma_i P_i \mid (\gamma_1, \ldots, \gamma_m) \in \Gamma \}$
In the context of UC

- Thinking of our dynamic programming problem, this framework allows be to build a schedule by visiting different nodes in the graph.
- If I visit node $v_{[a,b]}$, I can produce in periods $[a, b]$.
- However, I have constraints on how I build my solution! If I visit $v_{[a,b]}$ I cannot visit $v_{[a+1,b]}$!
- This restriction can be modeled by adding constraints on the γ terms (where γ represents if I visit a node or not).
An Ideal Formulation

Extended Formulation of Sums

Let Γ be any polyhedron in \mathbb{R}^m.

Theorem

Consider m nonempty polyhedra $P_i = \{ x \in \mathbb{R}^n \mid A^i x \leq b^i \}$, $i \in [m]$.

Consider the polyhedron $P := \{ \sum_{i=1}^{m} \gamma_i P_i \mid (\gamma_1, \ldots, \gamma_m) \in \Gamma \}$ and consider another polyhedron $Y \subseteq \mathbb{R}^{n+nm+m}$ defined by

$$ Y := \left\{ \begin{array}{l} A^i x^i \leq \gamma_i b^i, \ i \in [m] \\ \sum_{i=1}^{m} x^i = x \\ (\gamma_1, \ldots, \gamma_m) = \gamma \in \Gamma. \end{array} \right\} $$

Then $P = \text{proj}_x(Y) := \{ x \in \mathbb{R}^n \mid \exists (x^1, \ldots, x^m, \gamma) \in \mathbb{R}^{nm+m} \text{ s.t. } (x, x^1, \ldots, x^m, \gamma) \in Y \}$.
Takeaway

- We can use this theorem and the dynamic programming problem to generate a convex hull description of the “feasible dispatch polyhedra.”
Sums of Dispatch Polytope

- Let $\gamma_{[a,b]}$ be multiplier of $D_{[a,b]}$.

Generator Polytope

$$
D \overset{\text{def}}{=} \left\{ \begin{array}{l}
A_{[a,b]}p_{[a,b]} \leq b_{[a,b]}\gamma_{[a,b]} \\
\sum_{[a,b] \in T} p_{[a,b]} = p \\
\sum_{[[a,b] \in T \mid i \in [a,b+mindowntime]}} \gamma_{[a,b]} \leq 1 \ \forall i. \in T \\
\gamma_{[a,b]} \geq 0 \\
p_{[a,b]} \in \mathbb{R}_+.
\end{array} \right. \quad \forall [a, b] \in T$$
Remarks

There is a compact & tight formulation for generators. Moreover, this a very general framework. Any additional constraints can be added so long as Γ remains integer and the feasible dispatch problem remains a polytope.

Cons of this approach:

- Tight but large! T_{c3} many variables per generator. (Though only T many binomial variables are required).

Allows for:

- Arbitrary startup costs
- On-time dependent ramping constraints (to model startup and shutdown trajectories)
- Multistage Stochastic UC
- and more!
Lift and Project Cuts

- Using the full model results in a huge linear programming problem. The LP takes too long to solve!
- Another idea is to use the 3-bin model in the formulation but use the convex hull description to generate cuts.
- This is called *lift and project*
Lift and Project: A Picture

- The basic idea: We know the extended space, we are trying to generate the projected space.
- If we have a point in the projected space, we lift it to the extended space.
- If the lifted point is in the convex hull, then the original point is as well.
- If not, we can easily generate a separating cut in the extended space. Projecting that cut gives us a cut in the projected space.
Identical Generators

- Sometimes there are identical generators in the UC problem.
- Unfortunately, we cannot aggregate them in the 3-bin model.
- However, we can easily account for additional identical generators in the extended formulation!
- Using the dynamic program context, this can be seen by performing multiple walks along the network.
A Picture
How Often Are There Identical Generators?

- Looking at a test case from California ISO (CAISO):
 - Of 610 generators, 465 are unique, giving a reduction of 20%!
 - Performing this aggregation solves problems 40% faster (from about 2 minutes to about 1 minute)!
Results

- The data shows: There are a lot of almost identical generators.
- Aggregating near identical generators can reduce the number of generators from 610 to 315, for a 48% decrease (compared to 24% exactly identical).
- Solving the relaxed problems will be, we hope, much faster!
- The solutions are not always feasible, but they can be easily modified to become feasible.
- These modified solutions tend to be very close to the optimal solution (bases on limited tests, within 0.1%).
Current Work

- The proposed methods tend to work well in these “sythentic” test problems.
- Do they work well for real? We are in the process of finding out!
- There are many identical generators in a typical MISO UC instance. We are currently trying to implement this (and more) into their code.

Questions for the Future?

- We have a very tight IP formulation for UC. Can we solve it with cutting planes only (no branching)?
 - If so, we can generate more accurate prices.
- Can we use this model in expansion problems?
- What are the economic/market consequences of identical/nearly identical generators?