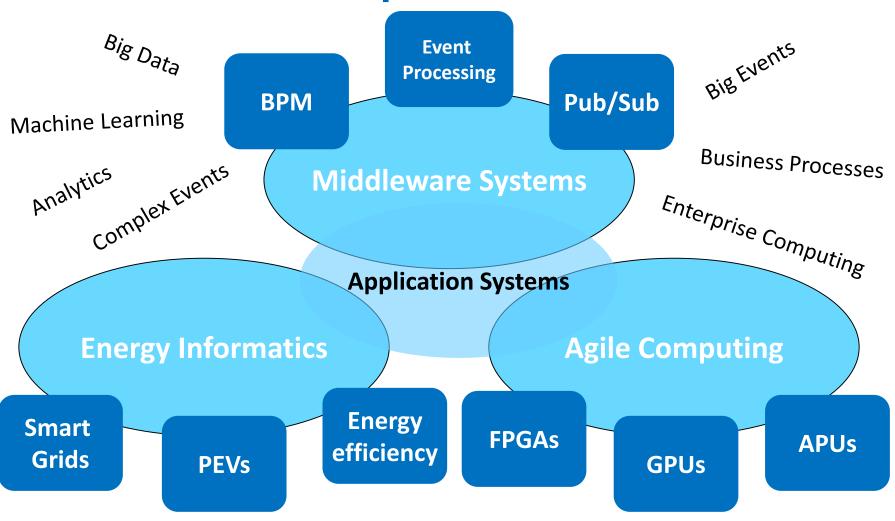
Our Energy Informatics Agenda: Putting Bits in Energy


Hans-Arno Jacobsen, Professor Alexander von Humboldt Professor

Technische Universität München (TUM) Department of Computer Science Application and Middleware Systems Research Group

Agenda

- Where we are coming from
- What is energy informatics
- Energy informatics teaching
- Selected research projects

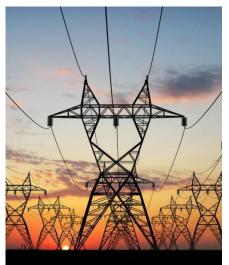
Our Research Scope

Energy Informatics (EI)

- Emerging interdisciplinary area
 - Interdisciplinary research involving among others electrical, mechanical, civil & computer engineering
 - Acquisition of new competences (energy conversion, power systems, etc.)
- Two perspectives
 - Develop systems that manage energy more sustainably
 - Develop more sustainable computer systems
- Evaluate systems based on realistic models and data

Dagstuhl Seminar & Community Building

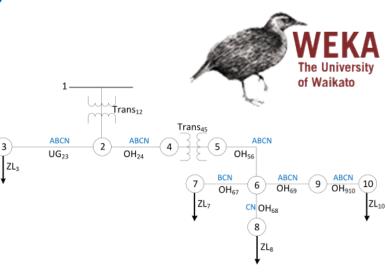
SCHLOSS DAGSTUHL Leibniz-Zentrum für Informatik



	About Dagstuhl	Program	Publications	Library
	You are here: Program » Ca	lendar » Seminar Homepage		
Dagstuhl Seminars	http://www.dagstuhl.de/15	6091		Book exhibition
Dagstuhl Perspectives GI-Dagstuhl Seminars	February 22nd – February	Books from the participants of the current Seminar Book exhibition in the library, 1st floor, during the seminar week.		
Events Research Guests	Smart Buildings and Smart Grids			
Calendar	J			
Seminars	Organizers			Documentation
Events	Hans-Arno Jacobsen (TU Mü Randy H. Katz (University of C Hartmut Schmeck (KIT – Kar	A CARDON AND AND AND AND AND AND AND AND AND AN	In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar	

Stay tuned for forthcoming report on the seminar. C. Goebel, H.-A. Jacobsen, *et al.* Energy Informatics – Current and Future Research Directions. BISE 2013.

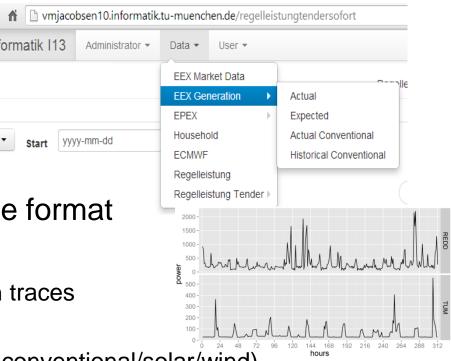
Our Energy Informatics Teaching


- Lecture (IN2280, 5 ECTS)
 - Big Data and data analysis in the energy domain
 - High performance computing for power systems
 - Electricity market design
 - Modeling and simulation of renewable energy resources and energy storage
 - Information age demand-response
 - Smart buildings and smart grids
- Seminar (IN4725, 4 ECTS)
 - Supervise students in research on EI topics
 - Literature review, empirical studies, and prototyping

Energy Informatics

Energy Informatics Lab

- Household demand forecasting (machine learning using WEKA)
- Wind power forecasting (machine learning using Python libraries)
- Distribution grid simulations (using GridLab-D)
- Optimal power flow and unit commitment optimization (using Matlab)


El Database

- Problem: Data supporting Download -El research hard to come by
- Solution: El database in usable format
 - Available data sets to date:
 - Household electricity consumption traces ٠
 - EEX Day Ahead ٠
 - EEX Generation (actual/expected conventional/solar/wind) •

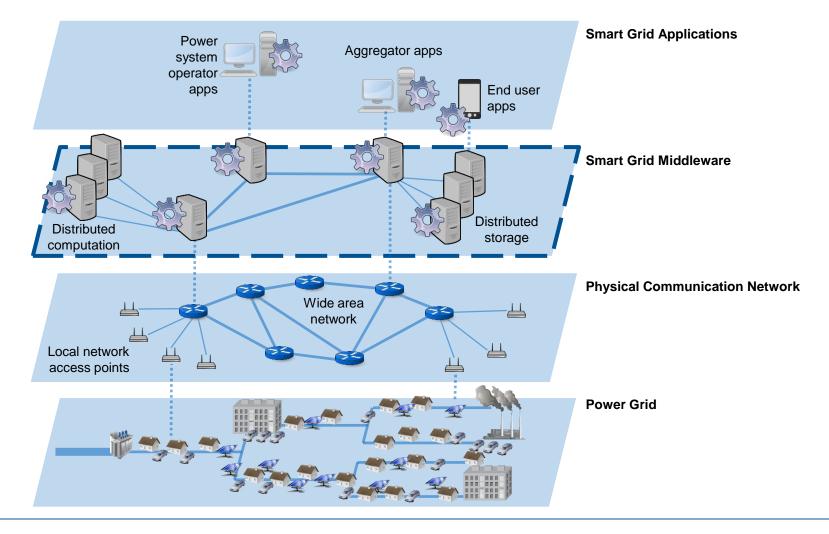
TUM Informatik 113

Start

- EPEX Spot Market (intra-day and auction) ٠
- Ancillary services (demand and tenders) •
- ECMWF (wind 10 meter, temp 2 meter, solar radiation, ...)
- Continuously updated and extended

Research Partnerships

Academia


● 香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Industry

Smart Grid Middleware Vision

Projects Overview

Household Electricity Demand Forecasting

Wind Power Forecasting

Big Data & Machine Learning

Energy Informatics Database

Bringing Distributed Energy Storage to Market

Open Grid Map

Efficient Distributed Discrete Event Simulation

> Transmission Grid Monitoring with PMUs

Prototyping

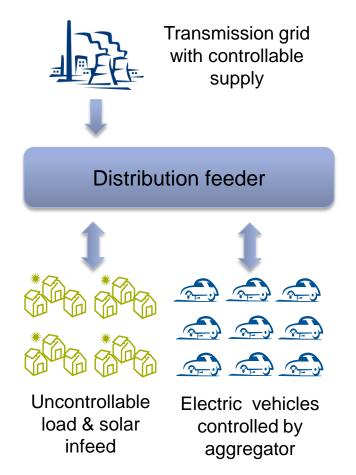
Smart Energy-Saving Systems

DOPS - Distributed Optimization over Pub/Sub

Modeling & Simulation

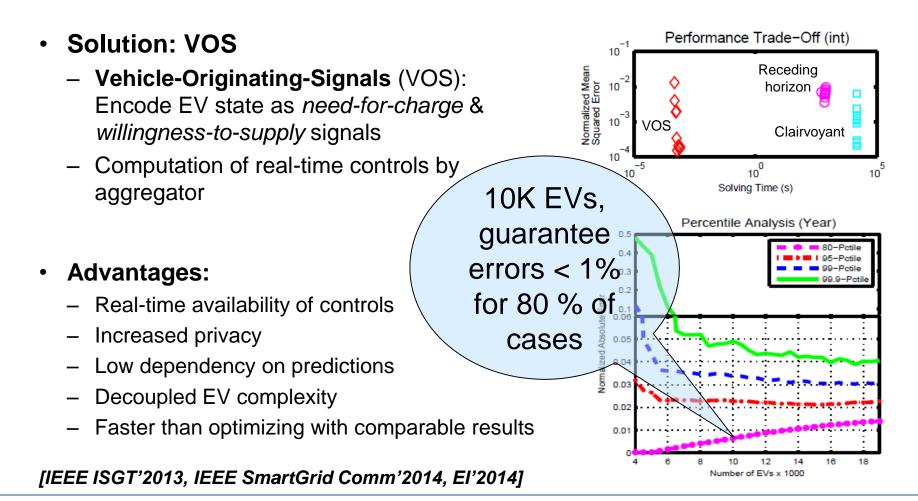
Budget-based EV Charging Control

VOS-Based Real-Time EV Charging Control


Real-Time EV Charging Control

• **Problem:** Find fast and scalable method for near-optimal real-time control of EV (dis)charging

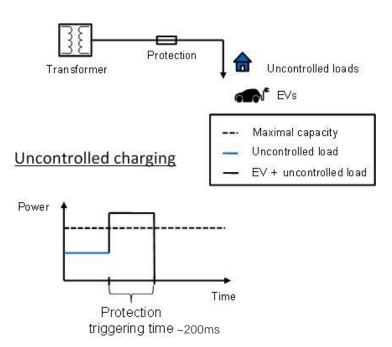
Challenges:


- Complex optimization problem
- Real-time requirement
- Dynamic influences: Variable non-EV load, renewable power, and EV (dis)charging availability
- State-of-the-art:

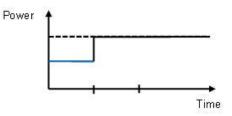
Centralized optimization based on full state information

[IEEE ISGT'2013, IEEE SmartGrid Comm'2014, El'2014]

VOS-Based Real-Time EV Charging Control



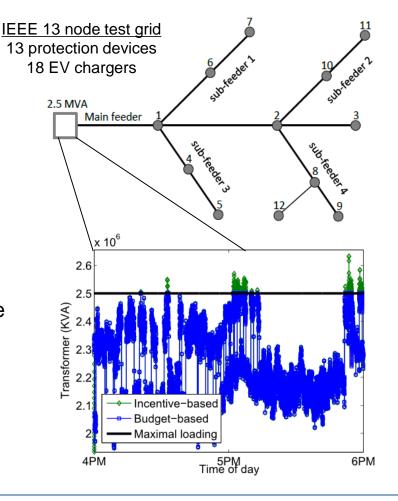
EV Charging Control


- **Problem:** Control EV charging to avoid grid overload and make optimal use of the available infrastructure
- State-of-the-art:
 - Direct control: Not scalable & no data privacy
 - Incentive-based control: Not fast enough
- Challenge:

Define a distributed optimization algorithm that can cope with real-time requirements

[IEEE CDC'13 & CDC'2014]

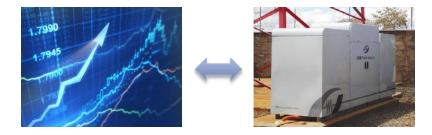
Controlled charging


Budget-based EV Charging Control

• Solution:

- Budget-based control
- Protection IEDs define a maximal charging rate for EVs based on the grid state

Advantages:


- Optimal use of the infrastructure
- Anytime algorithm allows real-time response

[IEEE CDC'13 & CDC'2014]

Bringing Distributed Energy Storage to Market

 Problem: How to control a large number of stationary batteries for flexible and concurrent participation in energy and reserve markets

Challenges:

- Enabling multi-market participation
- Develop efficient data structures for market & storage schedules
- Design of services that translate aggregator requests/controls into individual storage requests/controls
- Design fast planning and optimization algorithms that scale

Approach:

- Effective schedule representation
- Flexible and scalable resource control according to market rules
- Several techniques for solving dispatch problem

[IEEE Trans PS'2014]

RMSE

Weekdays

RMSE

Weekends

Household Electricity Demand Forecasting with Complex Event Processing

• **Problem:** Identify effective solutions for disaggregated electricity demand forecasting (smart meter & device level)

Challenges:

- Highly individual, uncertain and variable demand on household level
- Many existing forecasting techniques
- High computational cost of applying existing techniques

Forecast

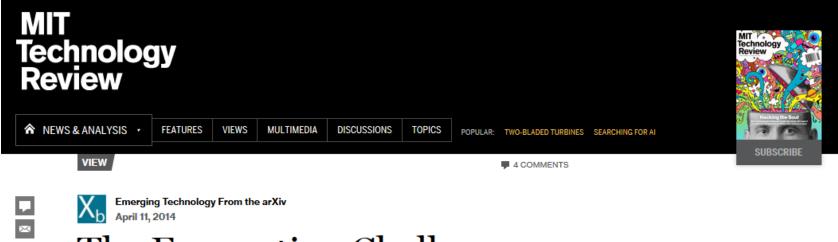
Data

MAE

Weekdays

Source: Siemens.com

[IEEE SmartGrid Comm'2013] [ACM Middleware'2013; ACM E-Energy'2014]


Application	&	Middleware	Systems	Research	Group	

		Weekdays	weekends	Weekdays	Weekends
HH1	Avg.	143%	133%	296%	319%
	Pers.	53%	63%	112%	131%
	SVMs	42%	53%	81%	117%
HH2	Avg.	132%	122%	207%	332%
	Pers.	57%	38%	137%	115%
	SVMs	33%	25%	85%	40%
HH3	Avg.	112%	101%	148%	124%
	Pers.	33%	43%	55%	128%
	SVMs	19%	17%	26%	25%
Avg.	Avg.	129%	119%	217%	258%
	Pers.	48%	48%	101%	125%
	SVMs	31%	32%	64%	60%

MAE

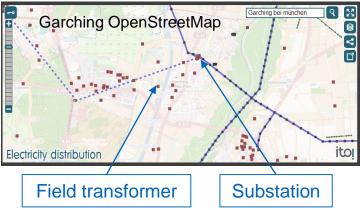
Weekends

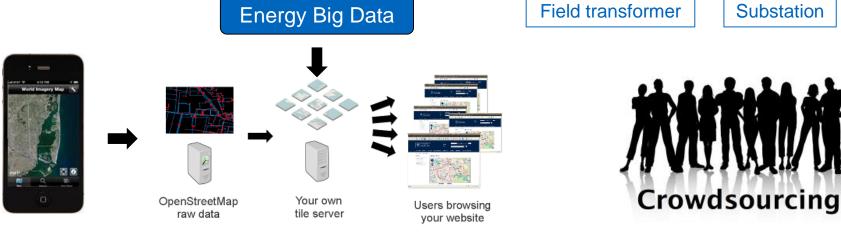
At least someone got excited

The Forecasting Challenge for Power Networks of the Future

f Y

+ ⊽


> The energy-efficient power networks of the future will require entirely new ways of forecasting demand on the scale of individual households. That won't be easy.


Open Grid Map

- Problem: Distribution grid information is often not available (even to DSO)
- Solution: Infer grid's structure from available and geo-tagged information collected via crowd-sourcing

Our Energy Informatics Team

Dr. Christoph Goebel Principal Researcher Experienced IS researcher (KIT, EPFL, CMU, Humboldt, UC Berkeley, TUM)

José Rivera, Dipl.-Ing.

Doctoral Student

Electrical engineer, studied at TUM, Master's thesis (with Siemens) on electric mobility, visiting student at MIT

Christoph Doblander, Mag.

Doctoral Student

Experienced software engineer (5+ years of industy experience), studied at FH Kufstein, previously worked in gas trading

Mathias Kahl, MSc.

Doctoral Student

Electrical engineer, manages our Non-invasive Load Monitoring project; computer science background

Victor del Razo, MSc.

Doctoral Student

Experienced telecommunications engineer (5+ years of industy experience), studied at University of Helsinki

Anwar UI HAQ, MSc.

Doctoral Student

Electrical Engineer, studied at Hanyang University, Korea, Master's thesis on Game Theory applied to Smart Grids

Conclusions

- Energy Informatics is an emerging area
- Recommendations to funding agencies
 - Establish open data set archives
 - The Internet trace archive of energy systems
 - Establish smart grid test beds
 - The PlanetLab of power grids
 - Establish smart building test beds
 - The EmuLab of smart buildings

Energy Informatics Papers I

- 1. C. Goebel, H.-A. Jacobsen, et al. Energy Informatics Current and Future Research Directions. *Business and Information Systems Engineering (6:1):* 25-31. 2013.
- 2. C. Goebel, D. Callaway. Using ICT-Controlled Plug-in Electric Vehicles to Supply Grid Regulation in California at Different Renewable Integration Levels. *IEEE Transactions on Smart Grid (4:2): 729-740.* 2013.
- 3. C. Goebel. On the Business Value of ICT-Controlled Plug-in Electric Vehicle Charging in California. *Energy Policy* (53:3): 1-10. 2012.
- 4. H. Ziekow, C. Doblander, C. Goebel, H.-A. Jacobsen. Electricity Demand Forecasting with Complex Event Processing: Insights from a Prototypical Solution. In Proceedings of the *13th ACM International Middleware Conference, Beijing, China.* 2013.
- 5. H. Ziekow, C. Goebel, J. Strüker, H.-A. Jacobsen. The Potential of Smart Home Sensors in Forecasting Household Electricity Demand. In Proceedings of the 4th IEEE International Conference on Smart Grid Communications (SmartGridComm2013), Vancouver, Canada. 2013.
- 6. J. Rivera, P. Wolfrum, S. Hirche, C. Goebel, Hans-Arno Jacobsen. Alternating Direction Method of Multipliers for Decentralized Electric Vehicle Charging Control. *52nd Conference on Decision and Control (CDC2013), Florence, Italy.* 2013.
- 7. C. Goebel, M. Voß. Forecasting Driving Behavior to Enable Efficient Grid Integration of Plug-in Electric Vehicles. *IEEE Online Conference on Green Communications (GreenCom)*. 2012.
- 8. V. del Razo, C. Goebel, H.-A. Jacobsen. Benchmarking a Car-Originated-Signal Approach for Real-Time Electric Vehicle Charging Control. Submitted to 5th Innovative Smart Grid Technologies Conference, Washington, DC., USA. 2013.
- 9. C. Goebel, D.S. Callaway, H.-A. Jacobsen. The Impact of State of Charge Management When Providing Regulation Power With Energy Storage. *IEEE Transactions on Power Systems (29:3): 1433-1434.* 2013.
- 10. C. Goebel, H.-A. Jacobsen. Multi-Market Sourcing of EV Charging Energy. *IEEE Transactions on Smart Grid* (under revision)

Energy Informatics Papers II

- 11. S. Rusitschka, C. Doblander, C. Goebel, H.-A. Jacobsen. Adaptive Middleware for Real-time Prescriptive Analytics in Large-scale Power Systems. In Proceedings of the 13th ACM International Middleware Conference, Beijing, China.
- 12. J. Rivera, C. Goebel, H.-A. Jacobsen. Distributed Real-time Control of EV Charging in Congested Distribution Feeders: A Solution based on Dynamic Budgets. *Working paper*. 2014.
- 13. V. del Razo, C. Goebel, H.-A. Jacobsen. Benchmarking a Car-Originated-Signal Approach for Real-Time Electric Vehicle Charging Control. In Proceedings of the 5th PES Innovative Smart Grid Technologies Conference (ISGT2013), Washington, D.C., USA.
- 14. A. Veit, C. Goebel, R. Tidke, C. Doblander, H.-A. Jacobsen. Household Electricity Demand Forecasting: Benchmarking State-of-the-Art Methods. In Proceedings of the 5th ACM International Conference on Future Energy Systems (ACM e-Energy 2014), Cambridge, UK. 2014.
- 15. J. Rivera, M. Jergler, A. Stoimenov, C. Goebel, H.-A. Jacobsen. Publish/Subscribe Middleware for Distributed EV Charging Optimization. Submitted to 5th Conference on Energy Informatics (El2014), Zurich, Switzerland.
- 16. C. Goebel, H.-A. Jacobsen. Bringing Distributed Energy Storage to Market. *IEEE Transactions of Power Systems*. (*under revision*). 2014.
- 17. V. del Razo, C. Goebel, H.-A. Jacobsen. On the Effects of Signal Design in Electric Vehicle Charging using Vehicle-Originating-Signals. Submitted to 5th Conference on Energy Informatics (El2014), Zurich, Switzerland.
- 18. C. Doblander, T. Rabl, H.-A. Jacobsen. Processing Big Data Events with Showers and Streams. *Third Workshop* on Big Data Benchmarking. 2013.
- 19. J. Rivera, H.-A. Jacobsen. A Distributed Anytime Algorithm for Network Utility Maximization with Application to Real-time EV Charging Control. *53nd Conference on Decision and Control (CDC2014), Los Angeles, CA, USA.* 2014.
- 20. V. del Razo, C. Goebel, H.-A. Jacobsen. Reducing Communication Requirements for Electric Vehicle Charging using Vehicle-Originating-Signals. Submitted to 5th IEEE International Conference on Smart Grid Communications (SmartGridComm2014), Venice, Italy.