

College of Engineering and Architecture

Specifications for the Power Grid Simulator

Anjan Bose Washington State University Pullman, WA

JST-NSF-DFG-RCN Workshop on Distributed EMS Arlington, VA April 20-22, 2015

What is Simulation?

- Testbed?
- Analytical Tools?
- Apps?
- Simulation maybe a part of an analytical tool
- Analytical tool or app requires
 - Input static vs time variable
 - Output characterizes the app
- Simulation is a mathematical description of behavior

What is simulation?

- Is power flow a simulation?
- Power flow 'simulates' an instant
- Simulation usually implies behavior over time
 - Electromagnetic (<msecs)
 - Electromechanical (>msecs)
 - Uniform frequency (secs)
 - Economic Dispatch (min)
 - Unit Commitment (hours-days-weeks)
 - Hydro Coordination (seasonal)
 - Planning (years)

Time Step of 0.1(s)

What is Real Time?

- Is the computation time faster than the time step?
- What affects the computation time
 - Size of the grid
 - Complexity of the models (equations)
 - Nonlinearities, particularly discontinuities
 - Computer architecture
 - Algorithm

Are there any real time simulators?

Simulator Characteristics

- Models
 - Algebraic equations (power flow)
 - Differential equations
 - Logic (control, protection)
- Main concern is the speed of dynamic behavior
- Faster behaviors are harder
- Many simulators are possible.
- Can they be seamlessly connected?

Transmission vs Distribution

- Mostly simulated separately
- Distribution models usually smaller
- Do we have to model distribution in our transmission simulation?
- Distributed generation, dynamic load control
- How much detail?

Why New Simulation Testbeds?

- Faster sensing (PMU)
- Faster communication
- Faster computers
- Faster controllers (FACTS)

Can we operate the grid more efficiently and reliably?

Need better tools to design and test new operational procedures and controls.

Simulation Challenges

- What is missing in the existing simulators?
 - New measurements
 - New power electronics equipment
 - New controls logic
 - Also
 - PMUs
 - Communications
 - Computation

Handling of the feedback loop of streaming measurements, control logic and control signals

Real Time Simulation

- Does the simulation have to be real time?
 Issues
- Synchronizing the simulation of different parts
 - Power grid
 - Communications
 - Computation
 - Control/protection logic

Don't know how to do time simulation of communication and computation

SGDRIL Test Bed at WSU

Real Time Digital Simulator and Other Devices

http://www.eecs.wsu.edu/~asrivast/SGDRIL/index.html

Cyber-Power System Modeling

GridSim: High Level Diagram

GridSim: Full Architectural Diagram

Adaptation for GridCloud Architecture

Testbed Challenge

- What are we testing?
 - A scenario
 - A widget (sensor, relay, controller)
 - A control process or protection scheme
- Inputs
 - Streaming measurements (real time data)
 - System data (static data)
- What simulation to use
- Output
 - Must include performance metrics

College of Engineering and Architecture

Testbed Challenge

- Many testbeds?
- Or one very flexible testbed
 - Changeable, flexible simulations
 - Different system data sets
 - Different scenarios (measurement data)
 - Different output sets

This is difficult to design. Maybe a few testbeds can cover the whole range