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4 Residential Demand Forecast�

Residential demand forecast is necessary for :
•  Determining operational planning of residential energy appliances (from HEM perspective)
•  Determining operation parameter of voltage controllers (from GEM perspective)
•  …

•  Forecast error causes inefficient operational planning for energy appliances.
•  We have to handle uncertainty in forecast for optimal planning.

Realized sequence

Forecasted sequence

Uncertainty in forecast result
•  Forecast error in peak demand
•  Forecast error in peak hour

FC status

Battery I/O

Operational
planning

Schematic image of demand forecast for operational planning of residential energy appliances



5 How Do We Handle Uncertainty in Demand Forecast?�

Multiple scenario forecast
•  Handling uncertainty in forecast by providing several plausible future demand 

curves under current condition (context).
•  Suitable for : 

!  Scenario-based stochastic optimization in operational planning of residential 
energy appliances

!  Robust parameter determination of voltage controllers on distribution 
networks

!  …

Realized
sequence

Forecasted sequences
(possible scenarios)

Energy Management
 Based on Multiple
 Scenario Forecast

Several utilization results were already presented 
from our team in yesterday’s poster session.

Professor Amano

PhD student Yoshizawa

An example of multiple scenario forecast



6 Multiple Scenario Forecast Based on K-Nearest Neighbor �

Input (current context)
•  Load curves of last N days
•  Weather forecast results
•  … 

Output (forecasted results)
•  A set of daily load curves

!  Energy load
!  Thermal load

Schematic image of load forecast based on K-Nearest Neighbor JIT (Just-In-Time) modeling 
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set of forecast resultsBasic idea
•  Extracting plausible load curves (outputs) under 

similar contexts (inputs) from the database 
according to the K-nearest neighbor (K-NN) 
framework. 

Multiple Scenario forecast

Providing plausible future load curves
•  Extracting a set of outputs caused under similar contexts.

!  How should we define appropriate similarity between contexts?



7 Distance Metric Learning for Multiple Scenario Forecast�

Problem in K-NN based forecast approach

Discordance

•  Discordance between K-
NNs in input data space 
and those in output data 
space.
!  K-NNs of current context do 

NOT indicate K-NNs of the 
actual realization. 

•  Learning appropriate distance metric in input 
data space by using the given distance metric 
in output data space to obtain concordant K-
NNs.

•  Focusing on a class of generalized 
Mahalanobis distance between two vectors.

Distance metric learning for K-NN forecast [Fujimoto+ 2014]

Appropriate distance metric for measuring input 
sequences can be derived according to ordinary least 
square framework by only using simple linear algebra. 



8 Local Distance Metric Learning for Forecast�

Naïve K-NN implementation 
based on Euclidean distance

Global metric learning
for K-NN forecast

Local metric learning
for K-NN forecast

Local distance metric learning for multiple scenario forecast:
3

Note that appropriateness of the multiple scenario forecast
results based on the above mentioned K-NN framework is
quantitatively measured in several ways. In this paper, we in-
troduce two criteria, i.e. Simpson coefficient and max distance.
The former criterion for any neighborhood sets NX

q and NY
q

is defined as follows,

SCq =
|NX

q ∩NY
q |

min(|NX
q |, |NY

q |) , (6)

where |N | indicates the cardinality of the set N . In our case,
|NX

q | = |NY
q | = K holds for any q, therefore Eq. (6)

intuitively indicates the cardinality of the intersection between
two sets of K-NNs.

The latter criterion, so-called max distance in this paper, is
defined as follows,

MDn = max
n∈NX

q

dY(yq,yn)− max
n∈NY

q

dY(yq,yn). (7)

The second term in Eq. (7) indicates the distance between
the target and the true K-th nearest output though the first
term shows the distance between the target and the output
corresponding to the K-th nearest input from the query under
learned distance metric dX . The max distance intuitively
evaluates the appropriateness of the learned distance metric
dX from the viewpoint of selected K-NNs in the output space
Y .

B. Regression Based Distance Metric Learning
Now, we discuss the learning procedure of dX in such a

way that the relative distance dXmn reflects the corresponding
relationship dYmn for arbitrary index pairs (m,n). In this paper,
we focus on the Mahalanobis distance as a class of dX , so
that our task is restated to obtain the estimate M̂ of the
Mahalanobis matrix M for construction of the distance metric
dX (M̂) by using the data set D.

A simple but powerful framework for this type of distance
metric learning has been proposed in [14], which is formulated
based on the linear regression algorithm. In our implementa-
tion, we firstly derive the similarity matrix AY = [aYmn] ∈
RN×N by using the following procedure,

aYmn =

−dYmn+
1

N

∑

m′

dYm′n+
1

N

∑

n′

dYmn′−
1

N2

∑

m′,n′

dYm′n′

2
.

(8)
Note that this is the well-known procedure to define similarity
(inner product) under the given metric dY [15]. By using the
similarity matrix AY , we derive an appropriate Mahalanobis
matrix M ∈ RI×I in Eq. (1) based on the regression method
as follows,

M̂ = argmin
M≽0

N∑

n,n′=1

(x⊤
nMxn′ − aYnn′)2

= argmin
M≽0

∥X⊤MX −AY∥2F

= (XX⊤)−1XAYX⊤(XX⊤)−1, (9)

Algorithm 1 Local Distance Metric Learning
Input: n, D, dY , K, Imax.
M (0)

n ← I .
for i = 0 to Imax do
K(i)

L ←
∣∣∣∣

{
l∈{1,. . .,N}; dXnl(M (i)

n ) ≤ max
m∈NY

n

dXnm(M (i)
n )

}∣∣∣∣.

Dn ← {(xm,ym);m ∈ NX (xn;K
(i)
L , dX (M (i)

n ))}.
Estimate M (i+1)

n by using Dn based on RML.
end for
î← argmini∈{0,...,I} K

(i)
L .

Mn ←M (̂i)
n .

Output: Mn

where X = [x1, . . . ,xN ]⊤ ∈ RN×I be an input data matrix,
and Z−1 is the pseudo inverse of a matrix Z. To avoid
singularity of XX⊤ and overfitting of M̂ in the practical
scene, we technically follow the smoothed version of the
estimate introduced in [14], that is,

M̂ = (XX⊤ + λI)−1XAYX⊤(XX⊤ + λI)−1, (10)

where λ > 0 is a smoothing parameter and I ∈ RI×I is an
identity matrix. The parameter λ is tuned based on the cross
validation in our implementation.

According to this framework, we utilize the distance metric
dX (M̂) to obtain the forecasting result set given as Eq. (3),
based on the given distance metric dY directly. In this paper,
we call this method RML (Regression based Metric Learning).

C. Local Metric Learning for Selection of K-NNs
Using RML in multiple scenario forecast is expected to be

effective, however, the relationship between input and output
data is generally intricate, so that finding concordant global
metric is a very difficult task in practical situations. We address
this intricacy by focusing on locality of the target and its
neighbors.

Let Mn be the local Mahalanobis matrix for selecting K-
NNs of xn and KL(> K) be the number of nearest neighbors
in N samples for constructing local distance metric dX (Mn).
In our framework, Mn is locally tuned by ignoring excessively
dissimilar data from the given xn for reconstructing K-NNs
of the corresponding yn. The proposed learning procedure for
local distance metric based on RML is given by Algorithm 1.
We focus on the KL neighborhoods of the datum xn for
constructing local metric Mn; the sample size for deriving
local distance metric, i.e. KL, is given as the cardinality of the
minimum neighbor set under the learned metric which contains
the corresponding inputs of the K-NNs. Based on Algorithm 1,
we can give a local distance metric Mn for each input xn in
the stored data D to keep the K-NNs of the corresponding
output yn.

Algorithm 2 shows our proposed procedure for multiple
scenario forecast by using the data set D and a set of local
distance metrics {Mn;n = 1, . . . , N}. Forecast results for
given query xq are obtained based on a local distance metric

•  Providing flexible and appropriate distance metric 
for each input. 

•  Improving discordance between K-NNs in input 
data space and those in output data space.

•  Providing context-oriented plausible multiple 
scenario forecast based on context-oriented 
distance metric.

 [Fujimoto+2014]



9 Numerical Experiment�

Purpose:
•  Evaluation of appropriateness of proposed forecast scheme from 

the view point of selection accuracy of the K-NNs
!  Cardinality of intersection between K-NNs in input and output spaces.

•  Comparing the following multiple scenario forecast frameworks:
!  Naïve K-NN implementation based on the Euclidean distance (EUC)
!  K-NN based on the regression based global distance metric learning (RML)
!  K-NN based on the regression based local distance metric learning (RLML)
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Experimental setup:
•  Input

!  Load curve of previous day (15min., 96-dim.)
!  Weather forecast of next day (1hour, 24-dim. 9vars).

"  Temperature, humidity, …
•  Output

!  Load curve of next day  (15min., 96-dim.)
•  Other setups

!  Number of samples: 450 days of input-output pairs in DB.
!  K: 10, 20, 30
!  Distance metric for output space: Euclidean distance.
!  Targeted load: total load of 550 houses

An example of input query (current context)

An example of output target (realization)
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Note that appropriateness of the multiple scenario forecast
results based on the above mentioned K-NN framework is
quantitatively measured in several ways. In this paper, we in-
troduce two criteria, i.e. Simpson coefficient and max distance.
The former criterion for any neighborhood sets NX
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The second term in Eq. (7) indicates the distance between
the target and the true K-th nearest output though the first
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corresponding to the K-th nearest input from the query under
learned distance metric dX . The max distance intuitively
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Y .
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Output: Mn

where X = [x1, . . . ,xN ]⊤ ∈ RN×I be an input data matrix,
and Z−1 is the pseudo inverse of a matrix Z. To avoid
singularity of XX⊤ and overfitting of M̂ in the practical
scene, we technically follow the smoothed version of the
estimate introduced in [14], that is,

M̂ = (XX⊤ + λI)−1XAYX⊤(XX⊤ + λI)−1, (10)

where λ > 0 is a smoothing parameter and I ∈ RI×I is an
identity matrix. The parameter λ is tuned based on the cross
validation in our implementation.

According to this framework, we utilize the distance metric
dX (M̂) to obtain the forecasting result set given as Eq. (3),
based on the given distance metric dY directly. In this paper,
we call this method RML (Regression based Metric Learning).

C. Local Metric Learning for Selection of K-NNs
Using RML in multiple scenario forecast is expected to be

effective, however, the relationship between input and output
data is generally intricate, so that finding concordant global
metric is a very difficult task in practical situations. We address
this intricacy by focusing on locality of the target and its
neighbors.

Let Mn be the local Mahalanobis matrix for selecting K-
NNs of xn and KL(> K) be the number of nearest neighbors
in N samples for constructing local distance metric dX (Mn).
In our framework, Mn is locally tuned by ignoring excessively
dissimilar data from the given xn for reconstructing K-NNs
of the corresponding yn. The proposed learning procedure for
local distance metric based on RML is given by Algorithm 1.
We focus on the KL neighborhoods of the datum xn for
constructing local metric Mn; the sample size for deriving
local distance metric, i.e. KL, is given as the cardinality of the
minimum neighbor set under the learned metric which contains
the corresponding inputs of the K-NNs. Based on Algorithm 1,
we can give a local distance metric Mn for each input xn in
the stored data D to keep the K-NNs of the corresponding
output yn.

Algorithm 2 shows our proposed procedure for multiple
scenario forecast by using the data set D and a set of local
distance metrics {Mn;n = 1, . . . , N}. Forecast results for
given query xq are obtained based on a local distance metric

Simpson coefficient



10 Results: K-NN Selection Accuracy�
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Note that appropriateness of the multiple scenario forecast
results based on the above mentioned K-NN framework is
quantitatively measured in several ways. In this paper, we in-
troduce two criteria, i.e. Simpson coefficient and max distance.
The former criterion for any neighborhood sets NX
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defined as follows,
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dY(yq,yn). (7)

The second term in Eq. (7) indicates the distance between
the target and the true K-th nearest output though the first
term shows the distance between the target and the output
corresponding to the K-th nearest input from the query under
learned distance metric dX . The max distance intuitively
evaluates the appropriateness of the learned distance metric
dX from the viewpoint of selected K-NNs in the output space
Y .
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A simple but powerful framework for this type of distance
metric learning has been proposed in [14], which is formulated
based on the linear regression algorithm. In our implementa-
tion, we firstly derive the similarity matrix AY = [aYmn] ∈
RN×N by using the following procedure,

aYmn =

−dYmn+
1

N

∑

m′

dYm′n+
1

N

∑

n′

dYmn′−
1

N2

∑

m′,n′

dYm′n′

2
.

(8)
Note that this is the well-known procedure to define similarity
(inner product) under the given metric dY [15]. By using the
similarity matrix AY , we derive an appropriate Mahalanobis
matrix M ∈ RI×I in Eq. (1) based on the regression method
as follows,

M̂ = argmin
M≽0

N∑

n,n′=1

(x⊤
nMxn′ − aYnn′)2

= argmin
M≽0

∥X⊤MX −AY∥2F

= (XX⊤)−1XAYX⊤(XX⊤)−1, (9)

Algorithm 1 Local Distance Metric Learning
Input: n, D, dY , K, Imax.
M (0)

n ← I .
for i = 0 to Imax do
K(i)

L ←
∣∣∣∣

{
l∈{1,. . .,N}; dXnl(M (i)

n ) ≤ max
m∈NY

n

dXnm(M (i)
n )

}∣∣∣∣.

Dn ← {(xm,ym);m ∈ NX (xn;K
(i)
L , dX (M (i)

n ))}.
Estimate M (i+1)
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Output: Mn

where X = [x1, . . . ,xN ]⊤ ∈ RN×I be an input data matrix,
and Z−1 is the pseudo inverse of a matrix Z. To avoid
singularity of XX⊤ and overfitting of M̂ in the practical
scene, we technically follow the smoothed version of the
estimate introduced in [14], that is,

M̂ = (XX⊤ + λI)−1XAYX⊤(XX⊤ + λI)−1, (10)

where λ > 0 is a smoothing parameter and I ∈ RI×I is an
identity matrix. The parameter λ is tuned based on the cross
validation in our implementation.

According to this framework, we utilize the distance metric
dX (M̂) to obtain the forecasting result set given as Eq. (3),
based on the given distance metric dY directly. In this paper,
we call this method RML (Regression based Metric Learning).

C. Local Metric Learning for Selection of K-NNs
Using RML in multiple scenario forecast is expected to be

effective, however, the relationship between input and output
data is generally intricate, so that finding concordant global
metric is a very difficult task in practical situations. We address
this intricacy by focusing on locality of the target and its
neighbors.

Let Mn be the local Mahalanobis matrix for selecting K-
NNs of xn and KL(> K) be the number of nearest neighbors
in N samples for constructing local distance metric dX (Mn).
In our framework, Mn is locally tuned by ignoring excessively
dissimilar data from the given xn for reconstructing K-NNs
of the corresponding yn. The proposed learning procedure for
local distance metric based on RML is given by Algorithm 1.
We focus on the KL neighborhoods of the datum xn for
constructing local metric Mn; the sample size for deriving
local distance metric, i.e. KL, is given as the cardinality of the
minimum neighbor set under the learned metric which contains
the corresponding inputs of the K-NNs. Based on Algorithm 1,
we can give a local distance metric Mn for each input xn in
the stored data D to keep the K-NNs of the corresponding
output yn.

Algorithm 2 shows our proposed procedure for multiple
scenario forecast by using the data set D and a set of local
distance metrics {Mn;n = 1, . . . , N}. Forecast results for
given query xq are obtained based on a local distance metric

SCq�

(w/o metric learning)
(global metric learning)
(local metric learning)

•  Our proposed framework improves accuracy in selection of the actual K-NNs of 
the realizations under various K by using distance metric learning.

•  Local distance metric learning improves selection accuracy. 



11 A Result of Multiple Scenario Forecast �
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•  Forecasted load curves based on our method adequately represent the plausible 
candidates which can occur under current context.



12 Conclusion�
We proposed a multiple scenario demand forecast framework.
•  Providing multiple load curves for representing uncertainty.
•  Selecting plausible candidates based on the learned distance metric.
•  Improving forecast accuracy based on the local metric learning.

Accurate forecast for what?
•  We evaluated our method only in terms of forecasting accuracy.

!  The appropriateness and the impact of forecasting uncertainty should be 
evaluated in the context of energy management.

•  Effectiveness of our approach is being verified from the viewpoint of the EMS.
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