

Multiple Scenario Forecast for Residential Energy Demands

2015 JST-NSF-DFG-RCN Workshop on Distributed Energy Management Systems @Arlington, Virginia, USA

> Yu Fujimoto (Waseda Univ.)

Our Research Team

Project: Development of distributed cooperative EMS methodologies for multiple scenarios by using versatile demonstration platform.

Waseda University

Yasuhiro Hayashi [Principal Investigator]

- Electric Power Engineering
- Electrical Energy System

- Shin-ichi Tanabe
- Architecture
- Building Environmental Engineering

Yoshiharu Amano

- Mechanical Engineering
- Numerical Optimization

Shinji Wakao

- Electric Power Engineering
- Photovoltaic Power **Generation System**

Noboru Murata

- Information Processing
- Machine Learning

Yu Fujimoto

- Machine Learning
- Data Mining

...

Shinva Yoshizawa

- Electrical Power Engineering
- Electrical Energy System

Osaka University

Yoshiyuki Shimoda Environmental Engineering

Urban Energy System

The University of Tokyo

Junpei Baba

ACROSS

2

- Power Electronics
- Energy Devices

Hokkaido University

Shin-ichi Minato

- Discrete Structure
 - **Manipulation System**
 - Intelligent Information Processing

Chiba University

- Hitoshi Irie
- Remote Sensing
- Atmospheric Environment

Keio University

Hiromitsu Omori

- Control Theory
- Numerical Optimizationgood

Hiroshi Ohashi

Economics

The University of Tokyo

Hideaki Ishii Control System Networked Control System

Nagoya University

Tokyo Institute of Technology

Shinkichi Inagaki

Mechatronics

Our Research Team

Project: Development of distributed cooperative EMS methodologies for multiple scenarios by using versatile demonstration platform.

Waseda University

Yasuhiro Hayashi [Principal Investigator]

- Electric Power Engineering
- Electrical Energy System

- Shin-ichi Tanabe
- Architecture
- Building Environmental Engineering

Yoshiharu Amano

- Mechanical Engineering
- Numerical Optimization

Shinji Wakao

- Electric Power Engineering
- Photovoltaic Power **Generation System**

Noboru Murata

- Information Processing
- Machine Learning

Yu Fujimoto

- Machine Learning
- Data Mining

Osaka University

Yoshiyuki Shimoda Environmental Engineering

Urban Energy System

The University of Tokyo

Junpei Baba

ACROSS

3

- Power Electronics
- **Energy Devices**

Hokkaido University

- Shin-ichi Minato
- Discrete Structure **Manipulation System**
 - Intelligent Information Processing

Chiba Universitv

- Hitoshi Irie
- Remote Sensing
- Atmospheric Environment

Keio University

Hiromitsu Omori

- Control Theory
- Numerical Optimizationgood

The University of Tokyo

Hiroshi Ohashi

Multiple scenario forecast for residential energy demands

(Joint work with professor Murata)

Shinkichi Inagaki

Mechatronics

Tokyo Institute of Technology

Control System

Nagoya University

Residential Demand Forecast

♦ ACROSS 4

Residential demand forecast is necessary for :

- Determining operational planning of residential energy appliances (from HEM perspective)
- Determining operation parameter of voltage controllers (from GEM perspective)

Schematic image of demand forecast for operational planning of residential energy appliances

- Forecast error causes inefficient operational planning for energy appliances.
- We have to handle uncertainty in forecast for optimal planning.

Multiple scenario forecast

- Handling uncertainty in forecast by providing several *plausible* future demand curves under current condition (context).
- Suitable for :
 - Scenario-based stochastic optimization in operational planning of residential energy appliances

ACR

5

Robust parameter determination of voltage controllers on distribution networks

Basic idea

Prediction procedure

Extracting *plausible* load curves (*outputs*) under similar contexts (inputs) from the database according to the K-nearest neighbor (K-NN) framework.

K-NNs enables us to obtain **multiple candidates** of $\langle y_q
angle$ by selecting neighbors $\mathcal{N}_{q}^{\mathcal{X}}$ of (x_{n}) from database which stores $\{(x_{n}), (y_{i})\}_{i=1}^{N}$.

① Input (x_q) to DB, and select neighbors $\mathcal{N}_q^{\mathcal{X}}$.

3 Output $\{y_n\}_{n \in \mathcal{N}_n^{\times}}$ as prediction candidates.

2 Relate to counterparts y_n , $i \in \mathcal{N}_a^{\mathcal{X}}$.

ACRO

6

 $oldsymbol{x}_1$ $(\boldsymbol{y}_1$ (\boldsymbol{y}_5) $oldsymbol{y}_6$ $oldsymbol{x_2}$ y_2 (\boldsymbol{x}_3) $(y_7)_3$ $oldsymbol{y}_8$ Output (forecasted results) \bigcirc A set of daily load curves \boldsymbol{x}_N Energy load 3 Thermal load

(1)

 \boldsymbol{x}_2

2

 (\boldsymbol{y}_1)

Schematic image of load forecast based on K-Nearest Neighbor JIT (Just-In-Time) modeling

Providing plausible future load curves

Database

- Extracting a set of outputs caused under similar contexts.
 - How should we define appropriate similarity between contexts?

Problem in K-NN based forecast approach

- Discordance between *K*-NNs in input data space and those in output data space.
 - K-NNs of current context do NOT indicate K-NNs of the actual realization.

Distance metric learning for K-NN forecast [Fujimoto+ 2014]

Local Distance Metric Learning for Forecast

Local distance metric learning for multiple scenario forecast:

- Improving discordance between *K*-NNs in input data space and those in output data space.
- Providing context-oriented plausible multiple scenario forecast *based on context-oriented distance metric*.

Algorithm 1 Local Distance Metric LearningInput: $n, \mathcal{D}, d^{\mathcal{Y}}, K, I_{max}$. $M_n^{(0)} \leftarrow I$.for i = 0 to I_{max} do $K_L^{(i)} \leftarrow \left| \left\{ l \in \{1, \dots, N\}; d_{nl}^{\mathcal{X}}(\boldsymbol{M}_n^{(i)}) \leq \max_{m \in \mathcal{N}_n^{\mathcal{Y}}} d_{nm}^{\mathcal{X}}(\boldsymbol{M}_n^{(i)}) \right\} \right|$ $\mathcal{D}_n \leftarrow \{(\boldsymbol{x}_m, \boldsymbol{y}_m); m \in \mathcal{N}^{\mathcal{X}}(\boldsymbol{x}_n; K_L^{(i)}, d^{\mathcal{X}}(\boldsymbol{M}_n^{(i)}))\}$.Estimate $\boldsymbol{M}_n^{(i+1)}$ by using \mathcal{D}_n based on RML.end for $\hat{i} \leftarrow \operatorname{argmin}_{i \in \{0, \dots, I\}} K_L^{(i)}$. $\boldsymbol{M}_n \leftarrow \boldsymbol{M}_n^{(\hat{i})}$.Output: \boldsymbol{M}_n

ACROSS

[Fujimoto+2014]

8

Purpose:

- Evaluation of appropriateness of proposed forecast scheme from the view point of selection accuracy of the K-NNs
 - \blacktriangleright Cardinality of intersection between *K*-NNs in input and output spaces.

Simpson coefficient $SC_q = \frac{|\mathcal{N}_q^{\mathcal{X}} \cap \mathcal{N}_q^{\mathcal{Y}}|}{\min(|\mathcal{N}_q^{\mathcal{X}}|, |\mathcal{N}_q^{\mathcal{Y}}|)},$

- Comparing the following multiple scenario forecast frameworks:
 - Naïve K-NN implementation based on the Euclidean distance (EUC)
 - K-NN based on the regression based global distance metric learning (RML)
 - K-NN based on the regression based local distance metric learning (RLML)

Experimental setup:

- Input
 - Load curve of previous day (15min., 96-dim.)
 - > Weather forecast of next day (1hour, 24-dim. 9vars).
 - ✓ Temperature, humidity, ...
- Output
 - Load curve of next day (15min., 96-dim.)
- Other setups
 - > Number of samples: 450 days of input-output pairs in DB.
 - ➤ K: 10, 20, 30
 - > Distance metric for output space: Euclidean distance.
 - Targeted load: total load of 550 houses

An example of input query (current context)

An example of output target (realization)

Simpson coefficients

- Our proposed framework improves accuracy in selection of the actual K-NNs of • the realizations under various K by using distance metric learning.
- Local distance metric learning improves selection accuracy. •

A Result of Multiple Scenario Forecast

K-NNs in output space

Ideal scenarios

Simpson coefficient: 1.0

Conventional naïve approach

♦ ACROSS 11

 Forecasted scenarios w/o metric learning [EUC]

Simpson coefficient: 0.1

Proposed approach

Forecasted scenarios based on local metric learning [**RLML**]

Simpson coefficient: 0.8

 Forecasted load curves based on our method adequately represent the plausible candidates which can occur under current context.

Conclusion

We proposed a multiple scenario demand forecast framework.

- Providing multiple load curves for representing uncertainty.
- Selecting plausible candidates based on the learned distance metric.
- Improving forecast accuracy based on the local metric learning.

Accurate forecast for what?

- We evaluated our method only in terms of forecasting accuracy.
 - The appropriateness and the impact of forecasting uncertainty should be evaluated in the context of energy management.

• Effectiveness of our approach is being verified from the viewpoint of the EMS.

Thank you for your attention

Vielen Dank für Ihre Aufmerksamkeit

Takk for din oppmerksomhet

ご清聴ありがとうございました