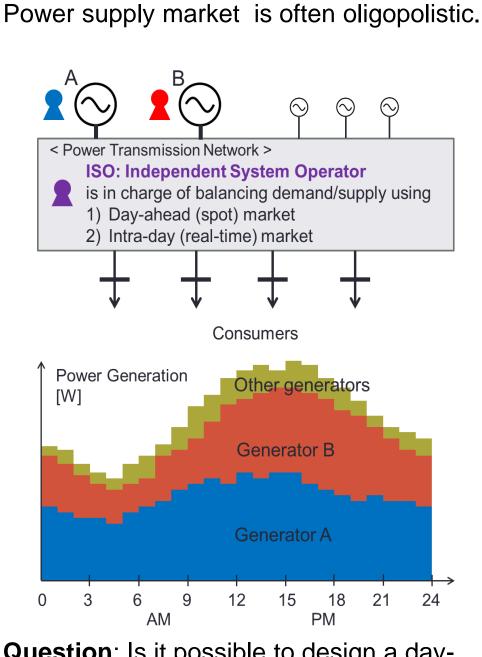
Incentive Compatible Power Market Design by Indirect Groves Mechanisms

Takashi Tanaka (Massachusetts Institute of Technology) Joint work with Farhad Farokhi (University of Melbourne) and Cédric Langbort (University of Illinois at Urbana-Champaign)


Abstract

In an inappropriately designed oligopolistic power supply market, stakeholders are incentivized to exeicise their market power to manipulate the market in order to maximize their own profit, resulting in a significant loss of social welfare. We discuss this issue in the framework of the indirect mechanism design theory, aiming at implementing socially optimal actions by power generators in a game theoretic equilibrium.

We show that indirect Groves mechanisms are not only sufficient but also necessary to implement efficient distributed algorithms in expost Nash equilibrium, which can be viewed as a generalization of the Green-Laffont theorem.

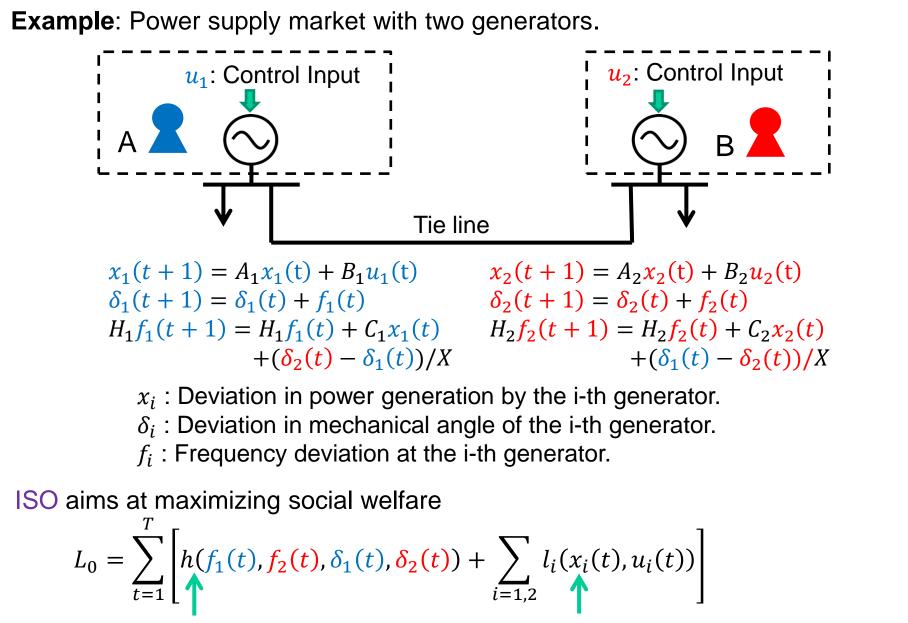
In particular, we demonstrate that the classical tâtonnement process to find the socially optimal solution can be made incentive compatible by introducing a reward function from the (indirect) Groves class.

Background

Naïve Market Mechanism

("Clearing-price" mechanism) Step 1: Each generator participates tâtonnement process to determine generation share. **Step 2**: Compute rewards by $\pi_i = \sum_{t=1}^T p^*(t) x_i^*(t)$. (No price discrimination)

Definition: A market mechanism is said to be ex-post Nash incentive compatible if participating tâtonnement process as designated is a Nash equilibrium for the power generators.


Remark: Although the "clearing-price" mechanism seems natural, it is not incentive compatible in general – a strategic generator with market power can be better-off by manipulating the market clearing price, resulting in a significant loss of social welfare.

Proposed Market Mechanism

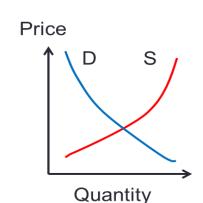
(Indirect Groves mechanism)

Question: Is it possible to design a dayahead market mechanism in which generators' selfish bidding strategies in an effort to maximize their own profit lead to a socially optimal outcome?

Problem Set-up

Quality of service

Assume that utility functions l_i are not known to ISO, and that the optimal generation share $x_i(t)$ must be computed by the following tâtonnement process.


(Tâtonnement process)

Repeat

Each generator updates generation share x_i by

$$\{x_i(t), u_i(t)\}_{t=1}^T = \arg\max\left(\sum_{t=1}^T l_i(x_i(t), u_i(t)) + p(t)x_i(t)\right)$$

• Price update by $p(t) \leftarrow p(t) + \eta(\text{Demand}(t) - \sum_i x_i(t))$

Step 1: Each generator participates tâtonnement process to determine generation share.

Step 2: Compute rewards by

 $\pi_{i} = \sum_{j \neq i} \sum_{t=1}^{T} l_{j} \left(x_{j}^{*}(t), u_{j}^{*}(t) \right) + k_{i}$ where k_i is a quantity that is not dependent on the *i*-th generator's strategy.

Theorem 1: (Sufficiency) Indirect Groves mechanism is ex-post Nash incentive compatible.

Theorem 2: (Necessity [1]) Under mild assumptions, an efficient (=maximizing social welfare) mechanism is ex-post Nash incentive compatible only if it is in the class of indirect Groves mechanisms.

Remark 1: Direct vs. Indirect mechanisms (e.g., [3])

- Direct mechanisms induce "truth-telling" by agents.
- Indirect mechanisms induce "faithful actions" by agents.

Remark 2: Theorem 2 can be viewed as a generalization of the Green-Laffont theorem to indirect mechanisms.

Pros & Cons

Indirect Groves mechanisms

Pros

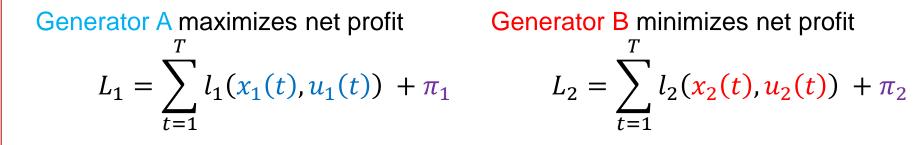
- Incentive compatibility
- Distributed computation
- No need to report utility functions

Cons • Price

- discrimination
- Communication complexity
- Budget balance

Conclusion

Summary


- "Clearing-price" mechanism fails to be incentive compatible.
- (Indirect) Groves mechanism faithfully implements tâtonnement process.
- (Indirect) Groves mechanism is the only mechanism that implements efficient decision rules in ex-post Nash equilibrium.

Future work

- Budget balance and individual rationality
- Extension to real-time market (e.g., MPC with receding planning horizon)
- Strategic collusions

Until converge

If all generators participate tâtonnement process faithfully, the process converges to a socially optimal share x^* and the market clearing price p^* .

Task: Design reward functions π_i so that no strategic generator is incentivized to deviate from implementing tâtonnement process faithfully.

Reference

[1] Tanaka, Farokhi, and Langbort "Faithful Implementations of Distributed Algorithms and Control Laws" arXiv:1309.4372v3, 2014

[2] Tanaka, Farokhi, and Langbort "A Faithful Distributed Implementation of Dual Decomposition and Average Consensus Algorithms" CDC 2013

[3] Parkes and Shneidman "Distributed implementations of Vickrey-Clarke-Groves mechanisms" Conf. on Autonomous Agents and Multiagent Systems 2004

Utility (negated cost) functions