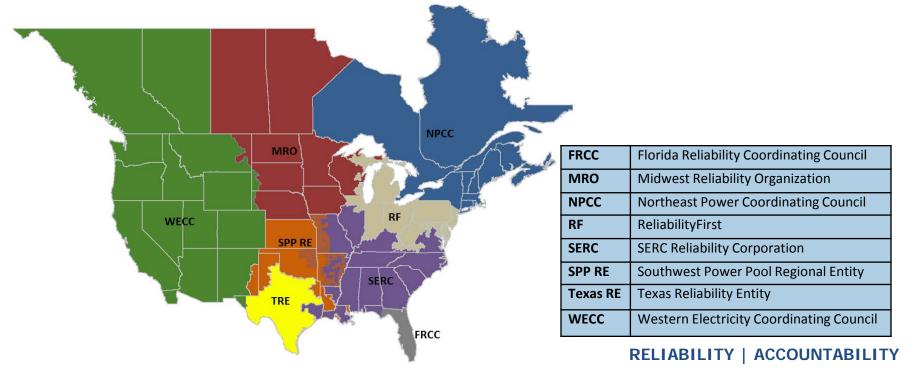
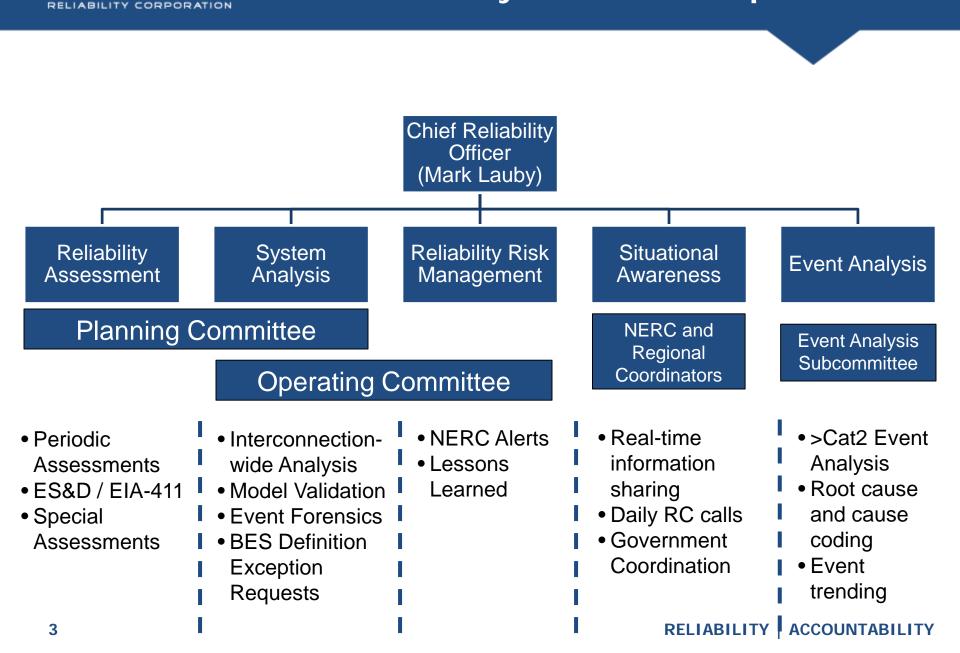

NERC

Analytical Capabilities at NERC

Modeling & System Analysis Initiatives University of Tennessee Knoxville Seminar – October 2016

Ryan D. Quint, PhD, PE Senior Engineer North American Electric Reliability Corporation





NERC Overview

- NERC Pillars of Success:
 - **Reliability**: address events and identifiable risks
 - **Assurance**: assure reliability to public, industry, and government
 - Learning: promote continuous improvement, lessons learned
 - **Risk-Based Approach**: focus attention and actions on most important issues

AMERICAN ELECTRIC

- Interconnection-Wide System Analysis
 - Frequency Response, Future Impacts of VER/DER
- Event Analysis & Blackout Investigation
 - Advanced simulation support for NERC Event Analysis
- Reliability Guidelines
 - Model validation, frequency response, load modeling, PMUs
- Emerging Technologies
 - Electric vehicles, distributed resources, storage, changing loads,
- Standards Development
 - Support advanced analytics for standards development; support industry in modifying standards to reflect technologies/capabilities
- Industry Support
 - IEEE 1547, PSRC, NASPI, NATF, NAGF, academia, etc.

RELIABILITY | ACCOUNTABILITY

4

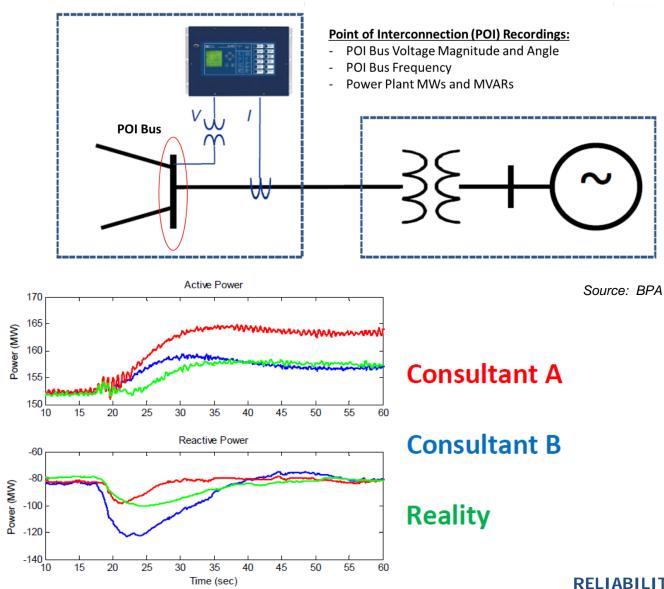
NERC System Analysis Projects Underway

Let's explore how it all links together...

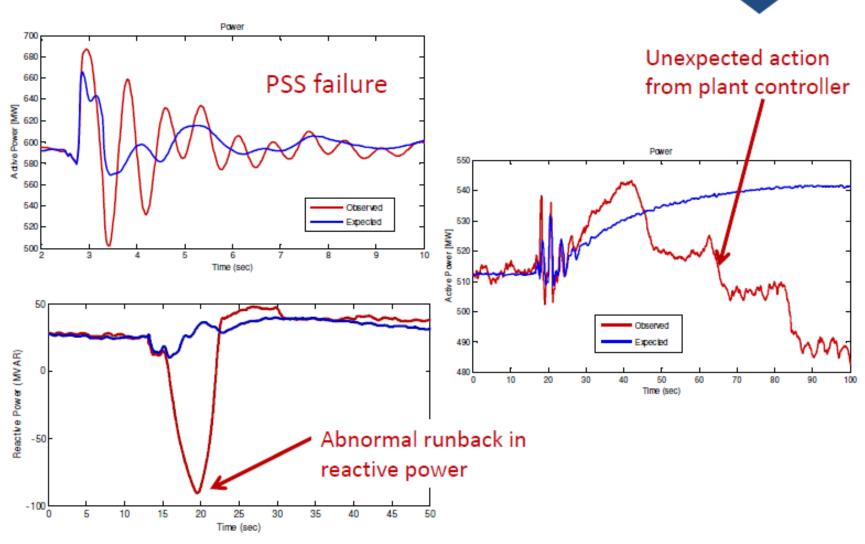
Purpose: Provide input for creation and management of robust, adequate, widely available and secure synchronized data measurement exchange structures across North America.

Key Work Tasks:

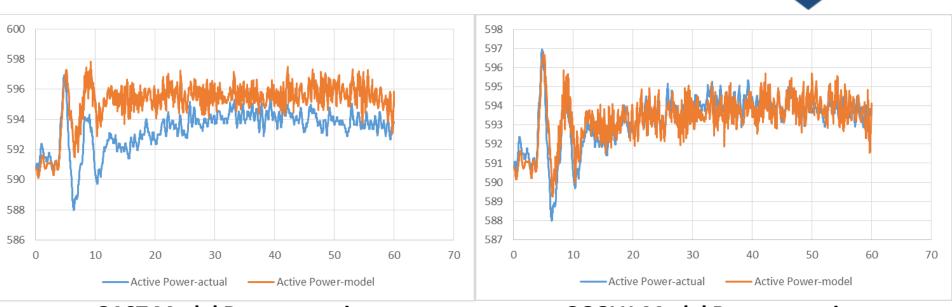
- PMU Placement Guideline
- SW Outage Recommendation 27 Angular Separation
- Leveraging PMU Technology for Enhanced Reliability
- Power Plant Model Verification
- Interconnection-wide Oscillation Analysis


- MOD-026: Generator excitation control system or plant volt/var control functions
- MOD-027: Turbine/governor and load control or active power/frequency control functions
- Applicability:
 - Individual generating unit greater than 100 MVA gross nameplate rating
 - Individual generating plant consisting of multiple generating units that are directly connected at a common BES bus with total generation greater than 100 MVA gross aggregate nameplate rating
- Process:
 - R1. TP provides instructions and model data to GO
 - R2. GO provides verified model back to TP
 - R3. TP can provide oversight of model and performance
 - R4. GO provides revised model/plans upon any changes made RELIABILITY | ACCOUNT

- **Requirement R3:** "...receiving one of the following items for an applicable unit:"
 - "...supporting evidence from its Transmission Planner indicating that the simulated...model response did not match the recorded response to a transmission system event."
- Requirement R5: "Each [GO] shall provide a written response to its [TP]...following receipt of a technically justified*...request from the [TP] to perform a model review of a unit or plant..."
 - "Corrected model data including the source of revised model data..."
 - *technical justified: achieved by the [TP] demonstrating that the simulated unit or plant response does not match the measured unit or plant response.



PMUs for Model Verification


Beyond Model Verification: Performance Monitoring

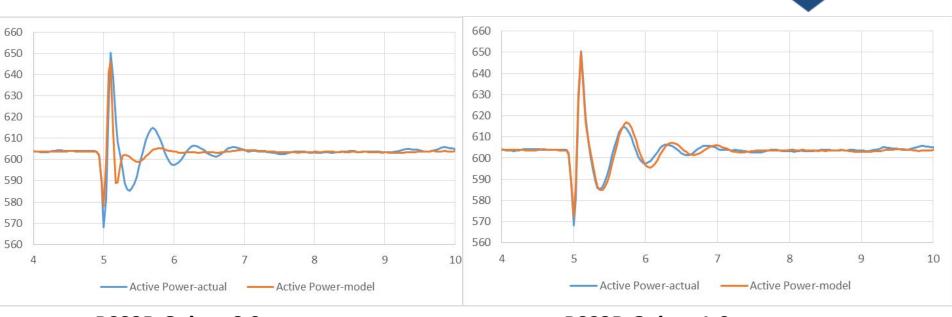
Source: BPA

Power Plant Model Verification Examples

GAST Model Representation

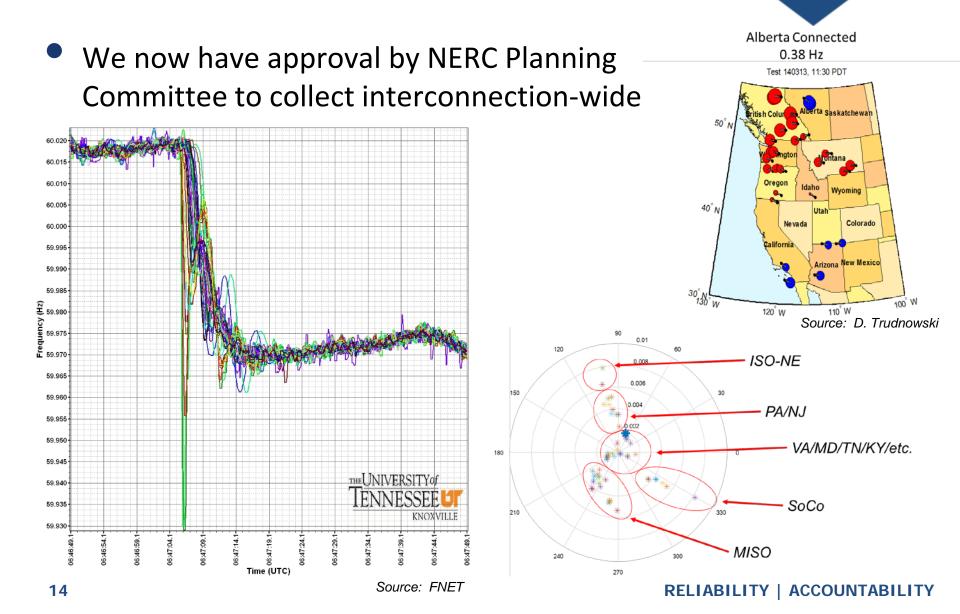
GGOV1 Model Representation

- GAST model used on new gas turbine generator (< 5 years old)
- GAST is Proportional gain model, no Integral component
- Swapped GAST for GGOV1 generic parameters got results above
 - 1000+ GAST models in EI base case
 - HOW do we swap those models? Industry needs guidance.


Frequency Response Issue

- El base cases (off the shelf) do not match frequency response characteristic (even remotely)
 - ERAG-MMWG has developed case(s) that reflect reality using auxiliary scripts and dynamics records
- Working with Siemens PTI to get baseload flag into .raw file

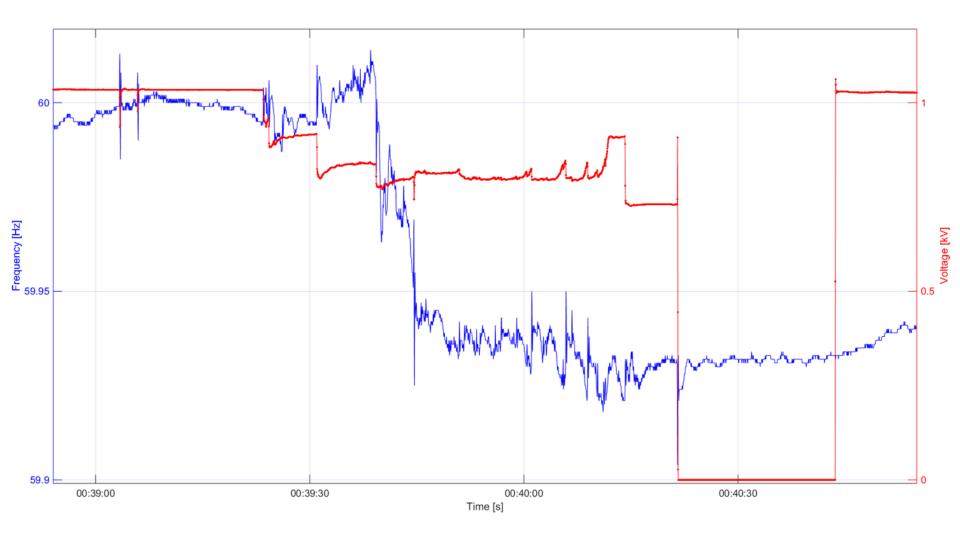
PSS Gain Adjustments


PSS2B Gain = 6.0

PSS2B Gain = 1.0

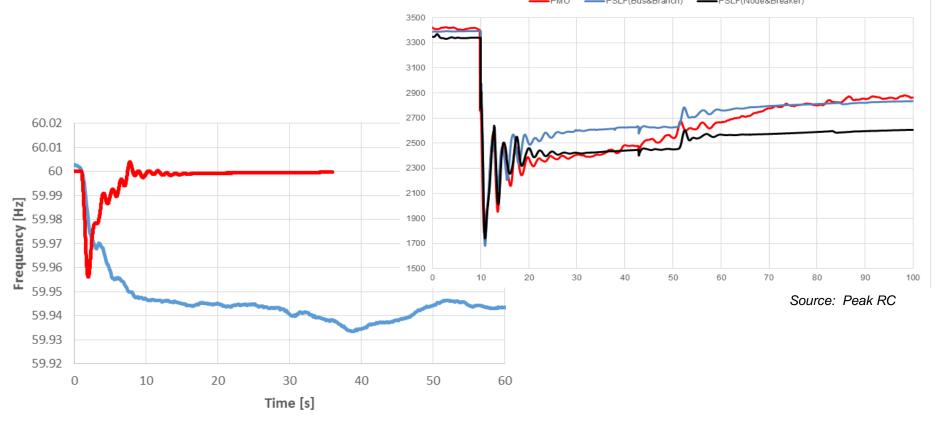
- PSS2B KS1 Gain changed
- Verifying on additional events
- We need a 'formal' process for making these changes. Industry needs guidance.

Special Reliability Assessment: Inter-Area Oscillation Analysis



Purpose: Adequate data available to facilitate analysis of Bulk Electric System (BES) Disturbances

- Sequence of Events & Fault Recording
 - Based on system fault MVA
- Dynamic Disturbance Recording (DDR) PMUs
 - Generators > 500 MVA
 - Aggregate generators > 1,000 MVA
 - System Operating Limits (SOL) & Interconnection Reliability Operating Limits (IROL)
 - Voltage sensitive areas
- Improved analytical capability for event analysis and advanced grid forensics



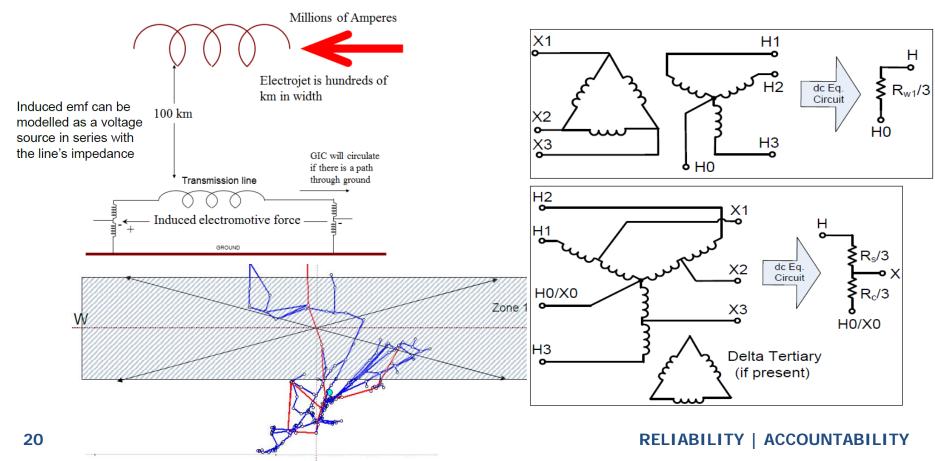
PRC-002-2: Disturbance Monitoring

Does the case match actual system performance? Need to perform model validation of system as a whole to ensure *case fidelity*.

Purpose: *Provide technical guidance related to topics involving Transmission Planning and modeling for North American utilities.*

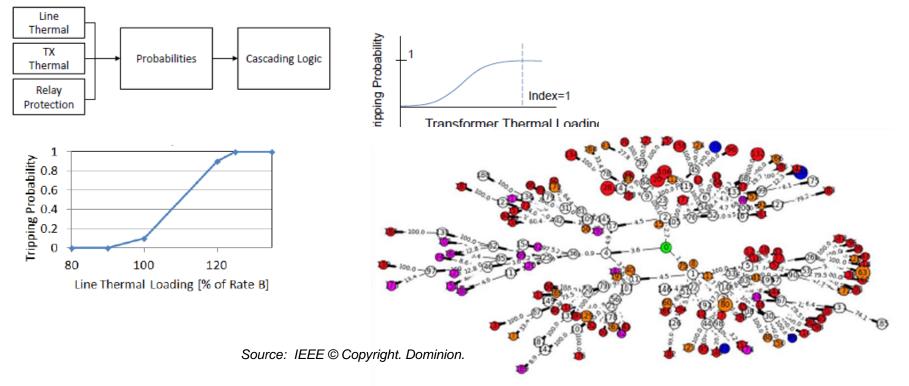
Key Work Tasks:

- Reactive Power Planning Guideline
- Integrating Variable Energy Resources Lessons Learned
- GMD Modeling Guideline
- Three-Phase Modeling Technical Reference



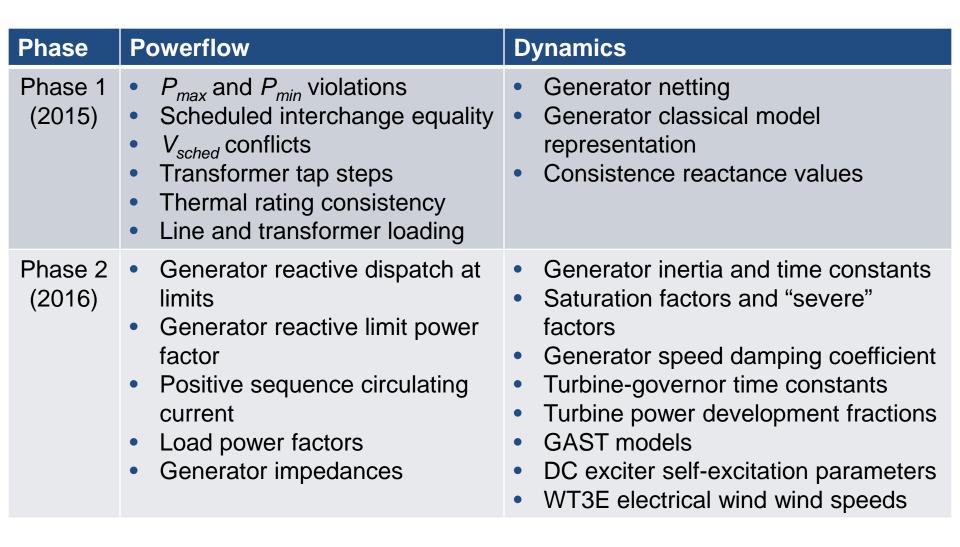
Purpose: Establish Transmission system planning performance requirements

Category	Initial Condition	Event ¹	Fault Type ²	BE\$ Level ³	Interruption of Firm Transmission Service Allowed ⁴	Non-Consequential Load Loss Allowed
P3 Multiple Contingency	Loss of generator unit followed by System adjustments ⁹	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	ransformer ⁵ 30 EHV, HV No ⁹		No ⁹	No ¹²
		5. Single pole of a DC line	SLG			
P4 Multiple Contingency (Fault plus stuck breaker ¹⁰)	Normal System	Loss of multiple elements caused by a stuck breaker ¹⁰ (non-Bus-tie Breaker) attempting to clear a Fault on one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	EHV	No ⁹	No
				нv	Yes	Yes
		 Loss of multiple elements caused by a stuck breaker¹⁰ (Bus-tie Breaker) attempting to clear a Fault on the associated bus 	SLG	EHV, HV	Yes	Yes
P5 Multiple Contingency (Fault plus relay failure to operate)	Normal System	Delayed Fault Clearing due to the failure of a non-redundant relay ¹³ protecting the Faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	EHV	No ⁹	No
				HV	Yes	Yesj
P6 Multiple Contingency (Two overlapping singles)	Loss of one of the following followed by System adjustments. ⁹ 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁵ 4. Single pole of a DC line	Loss of one of the following: 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁶	3Ø	EHV. HV	Yes	Yes
		4. Single pole of a DC line	SLG	EHV, HV	Yes	Yes



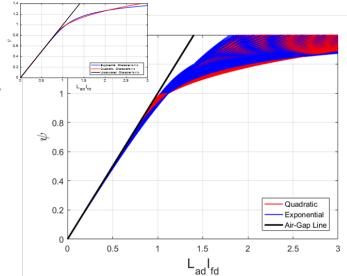
Purpose: Establish requirements for Transmission system planned performance during geomagnetic disturbance (GMD) events.

Requirement R1: risk assessments "to identify the Transmission station(s) and Transmission substation(s) that if rendered inoperable or damaged could result in instability, uncontrolled separation, or Cascading within an Interconnection."


- **Case Quality:** Reasonableness of the data for individual Element models that comprise the powerflow and dynamics cases.
 - Powerflow Metrics: assessment of quality of powerflow base case as developed by interconnection-wide case creation entities
 - Dynamics Metrics: assessment of quality of associated dynamics case component models

Assessments

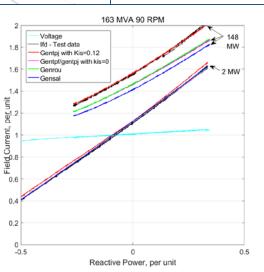
- Phase 1 (2015): Initial development of criteria and testing; main focus on powerflow case
- Phase 2 (2016): Re-assessment of Phase 1 metrics; additional metrics, focus on dynamics
- Phase 3 (2017): At a minimum, assessment of Phase 1 and 2 metrics on new cases (trending); possible new metrics


Powerflow and Dynamics Metrics Phases 1 and 2

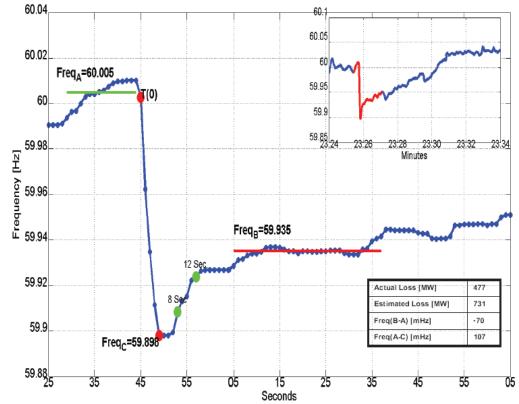
Metrics Assessment Observations

- P_{max} and P_{min} Violations
- Generator Reactive Limits
- Generator Reactive Limits Power Factor
- Generator Time Constants
- Generator Inertia Constants
- Saturation Factors
- Speed Damping Coefficient
- Turbine-Governor Power Development Fractions
- GAST Model
- Self-Excitation Parameter for DC Exciters

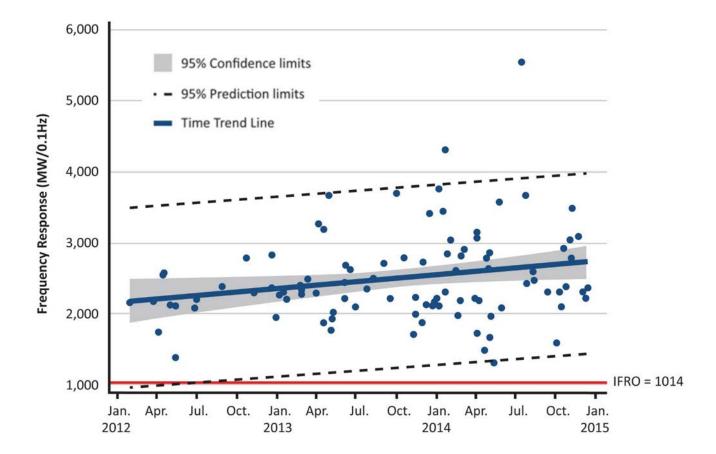
Purpose: Promote development and use of accurate system and electric equipment models for steady state and dynamic simulations


Key Work Tasks:

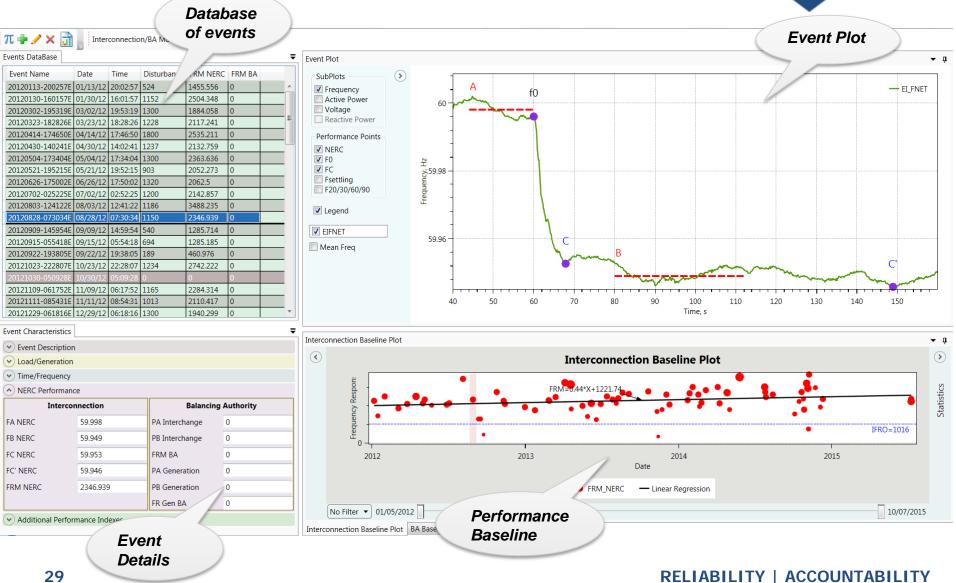
- Modeling Notifications
- Standardized Component Models
- Breaker-Node Representation


- Focus: Interconnection-wide awareness of modeling issues or advancements deemed necessary by modeling experts.
 - Ex. Case quality assessment, power plant model verification, stability studies
- Examples
 - EX2000
 - GENSAL
 - GAST
 - What's Next?
 - Priority?

NERC			
Initial Distribution: De Recent information	nics Component Model for Excitation System ecember 10, 2015 In has indicated that the EX2000 dynamics model in the		
	amics simulation program does not properly model the ent. EX2000 is a General Electric (GE) excitation syst		Voltage Ifd - Test data Gentpj with Kis
Primary Interest Groups:	Generator Owners, Generation Operators, Transmission Op Planners, Planning Coordinators , and Reliability Coordinators		Gentpf/gentpj v Genrou Gensal
 Advisory:	All recipients of this Advisory that are using the EX2000 mod PSS/E dynamics simulation software should be aware that the field current limiter portion of this model is suspect. For s involve action of overexcitation limiters (OEL) (i.e., ICON(M)= can be used without any issue, or the EX2000 model may be r model from the IEEE 421.5 standard. However, if it is neces action of an EX2000, EX2100, or EX2100e excitation system in		
		0.4	-



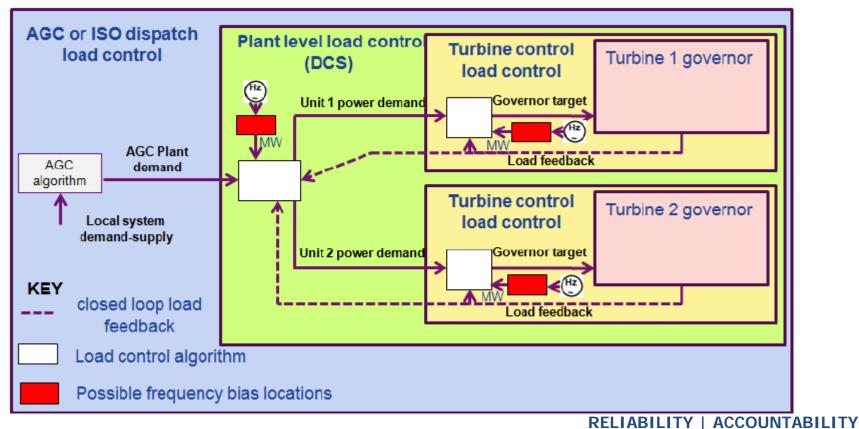
- NERC RS and FWG clearinghouse for frequency control
 - Primary Frequency Response
 - Governor Response
 - Secondary Response
 - AGC Coordination
 - Frequency Bias Settings
 - Time Error Correction
 - Inadvertent Interchanges
- FWG selects system events for M4 (trending) and BAL-003 (standards compliance)



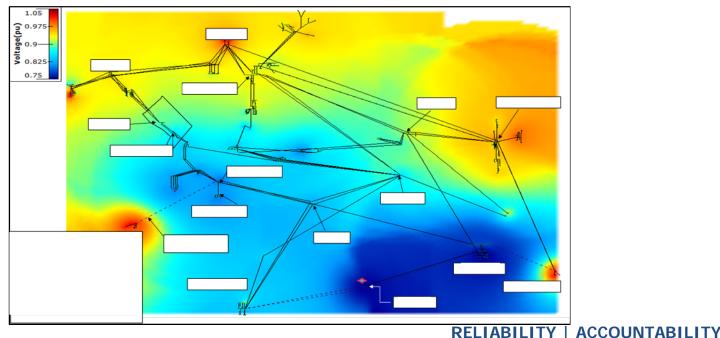
Purpose: Require sufficient Frequency Response from BAs to maintain Interconnection Frequency within predefined bounds

Frequency Response Analysis Tool (FRAT)

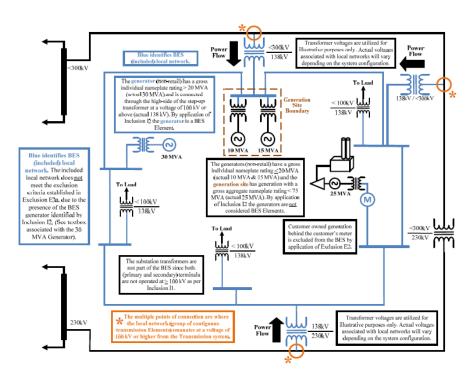
29

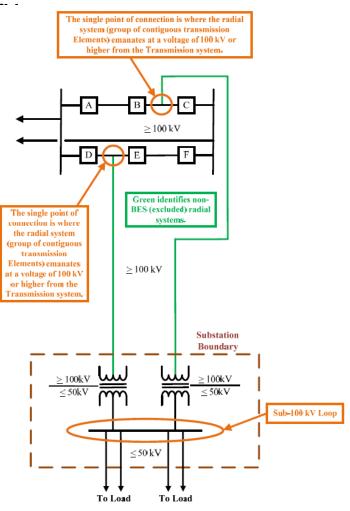

NORTH AMERICAN ELECTRIC

RELIABILITY CORPORATION

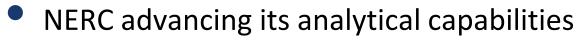

30

- Strategy for Primary Frequency Control during deviation events
- Recommended governor deadband and droop settings
- Understanding plant-level load control impacts




- System Analysis supports NERC Event Analysis for major grid events, particularly regarding simulations and modeling
- Recreate affected region in powerflow case
- Simulate sequence of events to validate event details
- Used for root cause analysis and sequence of events alignment

- BES: All Elements and Facilities necessation for the reliable operation and planning the interconnected Bulk-Power System
 - Self-Determined Notifications
 - Exception Requests


- Purpose: ensure essential reliability services as electric grid rapidly continues to change (renewables, retirements, etc.)
- Goal: develop measures to trend ERS moving forward and looking backward – develop guidance material accordingly
 - Measure 1 Synchronous Inertial trend (Interconnection)
 - Measure 2 Initial Frequency Deviation following largest contingency
 - Measure 3 Synchronous Inertial trend (BA)
 - Measure 4 Frequency Response
 - Measure 6 Net Load Ramping Variability
 - Measure 7 System Reactive Capability
 - Measure 10 Short Circuit Strength

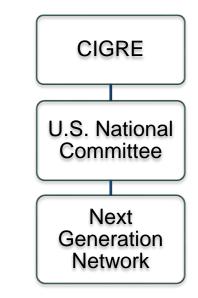
- Power plant modeling is limited to major Elements in plant
 - Generator, Turbine-Governor, Excitation, PSS, Limiters, Etc.
- More complex models either don't exist or are not being implemented in standard cases
- This TF is looking at what plant-level controls & protection are impacting unit performance and whether or not we have modeling capability in commercial software programs
 - This is incredibly valuable for forensic event analysis
- Examples:
 - Power Load Unbalance (PLU) relaying
 - Auxiliary bus undervoltage relaying & dropouts
 - Plant Distributed Control System (DCS) Load Controls
 - Boiler-pressure control vs. governor control

Closing Remarks

- System Modeling Improvements
- Reliability Assessments
- System Studies & Analysis
- Event Analysis & Forensics
- Industry Support & Outreach
- NERC interested in supporting academic community
 - Communicate current and emerging reliability needs
 - Support R&D initiatives and projects
 - Work with academic community to publish valuable/relevant findings
 - Engage in relevant NERC technical subcommittees
 - Provide networking mechanism to get students engaged in industry

Questions and Answers

<u>Contact Info:</u> Ryan D. Quint <u>ryan.quint@nerc.net</u>



- CIGRE: International Council on Large Electric Systems
- CIGRE US National Committee (USNC)
- Next Generation Network (NGN)
- How to Become a Member
- Benefits:
 - <u>e-CIGRE</u>
 - CIGRE USNC Grid of the Future (GOTF) Conference
 - GOTF Paper Competition
 - Top papers submitted to CIGRE Paris Session
 - Networking Opportunities

• CIGRE USNC Student Membership - \$0

CIGRE USNC Young Professional Membership - \$75 (for 2 yrs)

EXPAND TECHNICAL KNOWLEDGE – CIGRÉ WORKING GROUPS

CIGRÉ <u>Technical Study Committees & Working Groups</u>

- A1 Rotating Electrical Machines
- A2 Transformers
- A3 High Voltage Equipment
- B1 Insulated Cables
- B2 Overhead Lines
- B3 Substations
- B4 HVDC and Power Electronics
- B5 Protection and Automation
- C1 System Development and Economics
- C2 System Operation and Control
- C3 System Environmental Performance
- C4 System Technical Performance
- C5 Electricity Markets and Regulation
- C6 Distribution Systems and Dispersed Generation
- D1 Materials and Emerging Test Techniques
- D2 Information Systems and Telecommunications