
CURENT Seminar Series

The University of Tennessee, Knoxville, August 22nd 2017

Prof. Luigi Vanfretti

Rensselaer Polytechnic Institute, ECSE, Troy, NY

Web: ALSETLab.com

Email: vanfrl@rpi.edu - luigi.vanfretti@gmail.com

Dr. Phillip Top

Lawrence Livermore National Lab

Web: https://software.llnl.gov

Email: top1@llnl.gov

OpenIPSL

Modeling and Simulation of Electrical Power Systems using

OpenIPSL.org and GridDyn

Agenda

• About Me (Luigi)

• My Research.

• Recruiting for: ALSETLab

• Part 1: (Luigi Vanfretti)
 Introduction:

 Modeling and Simulation Generalities
and Modelica

 The OpenIPSL

 Recent developments

• Part 2: (Phillip Top)
 Applications of the OpenIPSL library

and the FMI in
 GRIDDYN

• Latter today: Tutorial: (Me + You!)

 Hands-on-Tutorial:

 Overview of the OpenIPSL library

 Overview of the OpenModelica
environment

 Hans-on-Example

 Do the “preparatory work” so
that everything is ready to go in
your computer!

2

About Me - http://ALSETLab.com - Dr. Luigi!

3

Other facts and numbers:
- Guatemalan and Italian Citizenships.
- Speak/write Spanish (native), English, Italian (spoken, poorly written), Norwegian (Basic)
- 36 years, married (March 4th, 2017) - no kids yet… but really want a dog!
- Close family, brother and wife, live in Woodstock, NY; run Dolce Caffe in Kingston’s Historical Roundout
- Lived in 4 countries, worked in 5…

2016 - 2017
Consultant.

2000 – 2005.
5 year Electrical Power
Engineering program @
Universidad de San
Carlos de Guatemala.

YOB.
1981
Guatemala

Visiting Researcher
@ The University of
Glasgow, Scotland

2006 – 2009
MSc and PhD @ RPI

2010
Post-Doc @ RPI

Fall 2004
Intern at INDE (National
Electrification Institute),
Substations Engineering

2010 – 2017, KTH Royal Inst. Of Tech.,
Stockholm, Sweden
2010: Associate Professor
2012: Docent (Habilitation)
2013: Associate Professor (‘tenured’)

2011 – 2017, SmarTS Lab. Research
Group

2011 -External
Scientific Advisor

(Consultant)
2011 – 2016
Special Advisor
R&D Division

All @ Statnett SF, Oslo, Norway
(Power System Operator)

http://alsetlab.com/

My Research – Cyber-Physical Power Systems

44

Implementation &
Rapid Prototyping
(software-in-the-loop
real-time simulation)

Implementation &
Testing

(hardware-in-the-loop
real-time simulation)

System Performance
(deployment and

demonstration)Validation

Verification

Testing

Testing Against Use Cases

Testing with other elements
and within the environment

Testing each component
in isolation and

with other elements

Unit Design

Models

Units

(SW, HW, Data)

Component

Design Models

Components

(SW, HW, Data)

Device Models Subsystems

Overall System

Models (incl.

grid)

User

Requirements &

Models

Operational

System

User Cases and
Requirements
(HLA Design using UML Spec and CIM)

System Level
Design & Specifications
(physical modeling and
off-line simulation)

Implementation
(Production Code

Generation)

Integrated

Systems
Subsystem

Integration & Tests
(hardware-in-the-loop

real-time simulation)

Model-and-Measurement-Based Systems Engineering of Power System and Synchrophasor Technologies

Recruiting @ ALSETLab

• I’m looking for graduate students to join my team!

• If you know someone that would be interested, please tell them to

check my website

• See: http://ALSETLab.com

5

http://alsetlab.com/

New Course! Spring 2018 - CPS Modeling, Simulation and Analysis

• Understand cyber-physical systems and

how to model them.

• Lean about standardized modeling

languages and compliant tools

• Learn and become proficient with the

Modelica language

• Learn and apply model-based systems

engineering concepts and tools (UML,

SysML using Papyrus RT)

• Apply identification, control and

optimization techniques to CPS systems

• Apply its use for analysis of:

 Power systems

 Energy efficient building automation

 Multi-domain energy systems

 Cyber-physical systems design and

analysis 6

Modeling and Simulation of Electrical Power Systems using

OpenIPSL.org and OpenModelica.org

Part 1: Introduction

Prof. Luigi Vanfretti

Rensselaer Polytechnic Institute, ECSE, Troy, NY

Web: ALSETLab.com

Email: vanfrl@rpi.edu luigi.vanfretti@gmail.com

http://openipsl.org/
http://openmodelica.org/
http://alsetlab.com/
mailto:vanfrl@rpi.edu
mailto:luigi.vanfretti@gmail.com

Outline

o The role of models and simulation
 Generalities

 In power electrical systems

o Modelica and power systems

o The OpenIPSL Project

o The OpenIPSL Library

o Continuous Integration

o On-going developments

8

A Fundamental Question: Why do we develop models and perform simulations?

• To reduce the lifetime cost of a

system

 In requirements: trade-off studies

 In test and design: fewer proto-
types

 In training: avoid accidents

 In operation: anticipate problems!

 Crucial for electrical power systems!

• The prospective pilot sat in the top

section of this device and was required
to line up a reference bar with the

horizon. 1910.

• More than half the pilots who died in

WW1 were killed in training.

9

A Failure to Anticipate  Huge Costs!

10

Others: WECC 1996 Break-up, European Blackout (4-Nov.-2006), London (28-Aug-2003), Italy (28-Sep.-2003), Denmark/Sweden (23-Sep.-2003)

Failure!

Existing modeling and

simulation (and associated)

tools were unable to

predict this (and other)

events.

There are many examples of failures to anticipate problems in power system operation!

The Multiple Roles of Modeling and Simulation in building:

Complex Cyber-Physical ”Systems-of-Systems”

11

Large Number of Vendors for the Final System

A Flying Micro-Grid!

M&S used to test
prototypes in variety of

environments.

M&S are used to train users in
the operational environment –

enhancing learning.
Simulation costs 1/10 of
running actual scenarios.

Scale of networks: cost-
prohibitive or technically
impossible for field tests.

M&S used to test and
validate networking

protocols in laboratory -
environment acting as a test

bed.

The Multiple Roles of Modeling and Simulation to develop

Cyber-Physical Power Systems (aka ‘smart grids’)

12

Implementation &
Rapid Prototyping
(software-in-the-loop
real-time simulation)

Implementation &
Testing

(hardware-in-the-loop
real-time simulation)

System Performance
(deployment and

demonstration)Validation

Verification

Testing

Testing Against Use Cases

Testing with other elements
and within the environment

Testing each component
in isolation and

with other elements

Unit Design

Models

Units

(SW, HW, Data)

Component

Design Models

Components

(SW, HW, Data)

Device Models Subsystems

Overall System

Models (incl.

grid)

User

Requirements &

Models

Operational

System

User Cases and
Requirements
(HLA Design using UML Spec and CIM)

System Level
Design & Specifications
(physical modeling and
off-line simulation)

Implementation
(Production Code

Generation)

Integrated

Systems
Subsystem

Integration & Tests
(hardware-in-the-loop

real-time simulation)

Conceptual Application for the Development of a WT Synchro phasor-Based Controller

Are today’s power system modeling and simulation approaches/tools fit to meet the

challenges of the cyber-physical world?

Dangers of Models and Simulation

• Falling in love with a model
The Pygmalion effect (forgetting that model
is not the real world)

• From the Greek myth of Pygmalion, a sculptor who
fell in love with a statue he had carved.

• Forcing reality into the constraints of a
model
The Procrustes effect (e.g. economic
theories)

• Procrustes: "the stretcher [who hammers out the
metal]”, a rogue smith from Attica that physically
attacked people by cutting/stretching their legs,
so as to force them to fit the size of an iron bed.

• A Procrustean bed is an arbitrary standard to which
exact conformity is forced.

• Forgetting the model’s level of accuracy
Simplifying assumptions forgotten more than
yesterday’s pudding…

13

Power system dynamics challenges for simulation

the tyranny of multiple time-scales

14

10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

Lightning

Line switching

SubSynchronous Resonances, transformer

energizations…

Transient stability

Long term dynamics

Daily load following

seconds

Electromechanical Transients

Electromagnetic Transients

Quasi-Steady State

Dynamics

Models are simplified (averaged) to

allow for simulation of very large

networks.

Ad-hoc solvers have been developed

to reduce simulation time, but usually

the “model” is “interlaced” with the

solver (inline integration)

Generally there are no discrete events.

(Ad-hoc DAE solvers)

This is usually deal with by

discretizing the model and to
solve it using discrete solvers.

The presence of large time
constants and small time

constants and large amount of
discrete switches.

Difficult to simulate very large
networks (in the past?)

The models are simplified further by neglecting

most dynamics (replacing most differential

equations by algebraic equations).

(Ad-hoc DAE solvers)

Power System Phenomena Modeled and Discussed from this point on:
power system electromechanical dynamics

15

10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

Lightning

Line switching

SubSynchronous Resonances, transformer

energizations…

Transient stability

Long term dynamics

Daily load following

seconds

Electromechanical Transients

Electromagnetic Transients

Quasi-Steady State

Dynamics

Positive Sequence / RMS / or

Phasor Time-Domain

Simulation

Electromechanical Dynamics in the Western US (1996)

• What was measured: • What was simulated:

16

2 3 4 5 6 7 8 9
-2

-1.5

-1

-0.5

0

0.5

1


 P

 (
p
u
)

Time (sec)

Measured Response

Model Response

Electromechanical dynamic modeling help to capture ”wide-area” behavior across

geographical sparse interconnected networks such as these type of oscillations.

Good models are crucial for planning and operation of electrical power networks.

Before

Model

Calibration

After Model

Calibration

Power Systems General DAE Model

17[Ref.] F. Milano, Power System Modeling and Scripting, Springer, 2010.

• The power system needs to be in balance, i.e. after a disturbance it must converge to an

equilibrium (operation point).

- Q: How can we find this equilibrium?

- A: Set derivatives to zero and solve for all unknown variables!

• Some observations that can be made:

- The algebraic equations in corresponded to having the fast differential equations at equilibrium all the

time (in the model and in the timescale considered).

- Finding the equilibrium when most of the variables are unknown is very difficult if when we try to solve this

equation system simultaneously.

- NB: power system tools do not generally do this!

- Hence, we attempt to sequentially solve the equation system for each t.

- First, we need to solve the algebraic equations that only depend on the

algebraic variables… this is were power systems deviates from other fields.

Finding the ”Power Flow” Steady State ”Equilibria”

18

Modelica –compliant tools

attempt to solve this problem

• Equation set g is separated in two sets of

algebraic equations:

(1) Is the part which governs how dynamic models will evolve, since they depend on

both x and y , e.g. generators and their control systems.

(2) Is the network model, consisting of transmission lines and other passive components

which only depends on algebraic variables, y.

Simulation: Starting from a solution of (2) only, equations (1) are solved at equilibrium
individually; to compute the starting guess of an ad-hoc DAE solver that iterates for (1)-

(2) at each time step.

Power System Modeling and Simulation Approach

19

Hypotheses
& Simplifications

Physical

System

Models

Equations

Analytical

Methods

Analyses

Specialized
M&S

Platform

Physical

System

User Defined

Models in Platform

Specific Language

Models with

Fixed

Equations

Available

(Limited)

Numerical

Algorithms

Analyses

Numerical
Methods

Fundamental Implications of the Conventional Power Systems Approach

20

Hypotheses
(assumptions)

Simplifications
(approximations)

General Approach Power Systems Approach

Closed-Form
Solution

Numerical
Solution

User:
Modeler and

Analyst Duality

Specialized Modeler Familiar with
the Domain Specific Platform

Specialized Analyst
Familiar with
the Domain

Specific Platform

Fixed Model is
”interlaced” with

one specific solver

Practical Implications of the Conventional Power Systems Approach

21

10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

Lightning

Line switching

SubSynchronous

Resonances, transformer

energizations…

Transient stability

Long term dynamics

Daily load

following

seconds

Phasor Time-

Domain Simulation

PSS/E
Status Quo:
Multiple simulation tools, with their own

interpretation of different model features and

data “format”.

Implications of the Status Quo:

- Dynamic models can rarely be shared in a

straightforward manner without loss of

information on power system dynamics.

- Simulations are inconsistent without drastic

and specialized human intervention.

Beyond general descriptions and parameter

values, a common and unified modeling

language would require a formal mathematical

description of the models – but this is not the

practice to date.

Why open standard-based modeling languages?

• Modeling tools first gained

adoption as engineers looked for

ways to simplify SW development

and documentation.

• Today’s modeling tools and their

use cases have evolved.

• Now: need for addressing both
system level design and SW

development/construction.

22

(2015)

Why equation-based modeling?

Equation—based modeling:

• Defines an implicit (not explicit) relation between variables.

• The data-flow between variables is defined right before simulation of the

model (not during the modelling process!)

• A system can be seen as a complete model or a set of individual

components.

• The user is (in principle) only concerned with the model creation,

and does not have to deal with the underlying simulation engine

(only if desired).

• It also allows decomposing complex systems into simple sub-

models easier to understand, share and reuse

23

CSSL (1967) introduced a

special form of “equation”:

variable = expression

v = INTEG(F)/m

Programming languages usually

do not allow equations!

Graphical Equation-Based Modeling

• Each icon represents a physical

component (i.e. a generator, wind

turbine, etc.)

• Composition lines represent the actual

interconnections between components

(e.g. generator to transformer to line to …)

• Physical behavior of each component is

described by equations.

• There is a hierarchical decomposition of

each component.

24

Key: standardized and open language specification

is a (computer) modeling language, it is not a tool!

• Modelica is a free/libre object-oriented

modeling language with a textual definition to

describe physical systems using differential,

algebraic and discrete equations.

• A Modelica modeling environment is needed to

edit or to browse a Modelica model graphically

in form of a composition diagram (= schematic).

• A Modelica translator is needed to transform a

Modelica model into a form (usually C-code)

which can be simulated by standard tools.

• A Modelica modeling and simulation

environment provides both of the functionalities

above, in addition to auxiliary features (e.g.

plotting)

25

http://modelica.readthedocs.io/en/latest/#

http://modelica.readthedocs.io/en/latest/

modeling and simulation environment (tool) tasks

26

Modelica Model

Flat model

Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted

equations

Modelica

Model

Modelica
Graphical Editor

Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

Frontend

Backend

"Middle-end"

Modeling

Environment

Acasual Modeling and it’s Implications on Model/Tool Development

• Acasual Modeling implicitly leads to faster

development and lower maintenance for models

(and even tools)

• The acausality makes Modelica library classes more

reusable than traditional classes containing

assignment statements where the input-output

causality is fixed.

• Modelica Compiler performs Causalization

o It flattens the model and then transform and

sort all equations that give the model

description.

o Aim is to match each equation to a variable,

hence the term “matching” process, doing an

Index reduction of the DAEs and transform

them to ODEs

27

Approach used
by Modelica Tools

Approach used
by Power

System Tools

User Defined Models

in some PS Tools and

Generic Tools

(Simulink)

Present
Modeling

and
Simulation

issues

Causal
Modeling

Model

Exchange

Inconsis-

tency

Modeling
limitations

• The order of computations is decided at

modelling time

• Models are black boxes whose parameters are

shared in a specific “data format”

• For large models this requires translation into the
internal data format of each program

• There is no guarantee that the same
standardized model is implemented in the same

way across different tools

• Even in Common Information Model (CIM) v15,

only block diagrams are provided instead of
equations

• Most tools make no difference between “solver”

and “model” – in many cases solver is implanted
in the model

Acausal Causal

R*I = v; i := v/R;

v := R*i;

R := v/i;

Why for power systems?

28

• Previous and Related Efforts

o Modelica for power systems was first attempted in the early 2000’s (Wiesmann & Bachmann, Modelica 2000) -
“electro-magnetic transient (EMT) modeling” approach.

 SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014); supports multiple modeling
approaches –i.e. 3phase, steady-state, “transient stability”, etc.

o Electro-mechanical modeling or “transient stability” modeling:

 Involves electro-mechanical dynamics, and neglects (very) fast transients

 For system-wide analysis, easier to simulate/analyze - domain specific tools approach

o ObjectStab (Larsson, 2002; Winkler, 2015) adopts ”transient stability” modeling.

o The PEGASE EU project (2011) developed a small library of components in Scilab, which where ported to proper
Modelica in the FP7 iTesla project (2012-2016).

o The iPSL - iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was released during 2015.
Most models validated against typical power system tools.

o F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large power networks
using Modelica, and a dedicated library to investigate them using the Open Modelica compiler.

OpenIPSL takes iPSL as a starting point and moves it forward (this presentation).

and Power Systems

29

(3) Decrease of avoidance forces
• SW-to-SW validation gives quantitatively an

similar answer than domain specific tools.

• Accuracy (w.r.t. to de facto tools) more
important than performance

and Power Systems

Why another library for power systems?

Social Aspects (Vanfretti et al, Modelica 2014)

• Resistance to change: an irrational and
dysfunctional reaction of users (and
developers?)

o Users of conventional power system tools
are skeptical about any other tools
different to the one they use (or develop),
and are averse about new technologies
(slow on the uptake)

• Change agents contribute (+/-) to address
resistance through actions and interactions.

30

A never-ending effort!
• The library has served to bridge the gap

between the Modelica and power systems
community by:

• Addressing resistance to change (see above)

• Interacting with both communities – different
levels of success…

(2) Propose
a common human and computer-readable
mathematical “description”: use of Modelica for
unambiguous model exchange.

(1) Strategy do not impose the use of a specific
simulation environment (software tool), instead,

The OpenIPSL Project

• http://openipsl.org

• Built using the Modelica

language:

• Distributed with the MPL2

license:

31

Free as in Puppy!

Needs a lot of your love and care to grow and be happy!

http://openipsl.org/

• KTH SmarTS Lab (my former research team) actively participated in the group
or partners developing iPSL until the end of the iTesla project (March 2016)

• iPSL is a nice prototype, but we identified the following issues:
o Development: Need for compatibility with OpenModelica, (better) use of object

orientation and proper use of the Modelica language features.

o Maintenance: Poor harmonization, lack of code factorization, etc.

o Human issues: The development workflow was complex
 Different parties with disparate objectives, levels of knowledge, philosophy, etc.

• OpenIPSL started as a fork of iPSL in 2016, and has now largely evolved!
• OpenIPSL is hosted on GitHub at http://openipsl.org

• OpenIPSL is actively developed by ALSETLab (formerly SmarTS Lab) members
and friends, as a research and education oriented library for power systems
 it is ok to try things out !

New research requirements and the experiences from previous effort indicated:

- a clear need for a different development approach –

one that should address a complex development & maintenance workflow!

The OpenIPSL Project - Origins

32

Fork: copy of a project going in a
different development direction

http://openipsl.org/

The OpenIPSL Library – Key Feautures

OpenIPSL is an open-source Modelica library

for power systems

• It contains a set of power system

components for phasor time domain
modeling and simulation

• Models have been validated against a

number of reference tools (mainly PSS/E)

OpenIPSL enables:

• Unambiguous model exchange

• Formal mathematical description of models

• Separation of models from tools/IDEs and
solvers

• Use of object-oriented paradigms

33

The OpenIPSL Library – WT Example

34

The OpenIPSL Library – Network Example

35

Resulting Parameter Declaration

Resulting Class Instantiation

Class Connections

Many Application Examples Developed!!!

The OpenIPSL Library – Application Examples

36

Klein-Rogers-Kundur 2-Area 4-Machine System

IEEE 9 Bus IEEE 14 Bus

Namsskogan Distribution Network

The OpenIPSL Library – providing a good “initial guess”

• An initial guess for all algebraic, continuous and discrete variables
need to be provided to solve a numerical problem!

• When solving differential equations, one needs to provide the initial
value of the state variables at rest.

• In Modelica, initial values can be either solved or specified in many
ways, we use the following

• Using the ”initial equation” construct:

 initial equation

• x = some_value OR x = expression to solve

• Setting the (fixed=true, start=x0) attribute when instantiating a
model when the start value is known (or possible to calculate)

• If nothing is specified, set the default would be a guess value
(start= 0, fixed=false).

• In the OpenIPSL models we do the following:

• The initial guess value is set with (fixed = false) for initialization.

• Model attributes are treated as parameters with value (fixed =
true),

37

• In OpenIPSL we use a power flow

solution from an external tool (e.g.

PSAT or PSS/E) as a starting point

to compute initial guess values

through parameters within each

model.

• The power flow solution is NOT

the initial guess value itself.

• Aim is to provide a better

“initial guess” to find the initial

values of the DAE system.

Third order

model from

PSAT

implemented in

OpenIPSL

The OpenIPSL Library – “initial guess” example

38

The OpenIPSL Project Documentation

• Documentation of the code changes:

• Explicit messages in commits

and pull-requests

• Documentation of the project

 Presentation

 User guide

 Dev. guidelines & How to contribute

 The documentation is written in

reStructuredText (reST) hosted on

http://openipsl.readthedocs.io/

• Note: Model documentation is not included,

users are referred to literature, textbooks and

the proprietary documentations.

39

http://openipsl.readthedocs.io/

The OpenIPSL’s Project - Continuous Integration (CI) Service

40

• A CI service was implemented and integrated to the repository. The Modelica

support was achieved with the following architecture:

• Travis as CI service provider

• Docker as the “virtualization” architecture

• DockerHub to host a Docker image with Python & OpenModelica

• The CI performs automated syntax checks on the library.

New changes

are submitted as

a new pull

request to the

master branch

The pull request

triggers the

Travis CI

The tailored

Docker image

is pulled
The reference

traces are

pulled from a

dedicated

server

The latest version of

the library containing

the changes is pulled

from GitHub

The Docker is

instantiated to

create a

replicable

environment

where the tests

are carried out

The pass / fail

flag from the

tests on Travis is

sent to Github

Go to the OpenIPSL Github repo
https://github.com/openipsl , see runTest.py

The OpenIPSL’s CI Commit Output (Syntax Check Workflow)

41

Click to see the IO from Travis

Results from CI testing on

syntax check on several

“Application Examples”

https://github.com/openipsl

•OpenIPSL.org organization in Github! (Prof. Dietmar Winkler)
•Website will be also hosted there!

The OpenIPSL – Ongoing Developments and Future Work!

• Library Improvements (Tin Rabuzin, Maxime Baudette)

• 100% Compatibility with OM (100% Syntax Check, ~100%

Simulation for components) through efforts in Continuous

Integration adoption

• Change in the models to include inheritance (code factorizing)

• Fixing and validating network models – application examples

(thanks to CI)

• ENTSO-E IOP Models (Francisco Gomez Lopez)

• Proof of concept and test model

• Excitation system and small network model

42

http://me.dwe.no/
https://github.com/tinrabuzin
http://www.baudette.fr/
https://github.com/tinrabuzin
https://github.com/tinrabuzin
http://www.baudette.fr/
http://www.baudette.fr/
http://me.dwe.no/
http://me.dwe.no/

The OpenIPSL – Ongoing Developments and Future Work!

• Efforts within the openCPS project

• New Component Models
• New components for the OpenIPSL being developled:

• Process noise (stochastic) pdf-based load models

• Frequency estimation models

• PMU “Container” Block (frequency estimation + packaging)

• Control systems for islanded operation and automated resynch

• Multi-domain modeling for gas turbines and power systems
• Based on ThermoPower and OpenIPSL

• Miguel Aguilera, et al.

• More!

• Joint modeling and simulation of transmission (positive
sequence) and distribution (three-phase) power networks

• Marcelo de Castro Fernandez and Prof. Janaina Gonçalvez (UFJF, Brazil)

43

https://github.com/maguilerac
https://www.linkedin.com/in/marcelo-de-castro-fernandes-615570b3/
http://www.ufjf.br/inerge/institucional/membros-das-instituicoes/ufjf/prof-a-janaina-goncalves-de-oliveira/

The OpenIPSL – Ongoing Developments (CI+R)

• CI + Regression Testing

• A two-stage process

o Modelica syntax check

(against Modelica

language implementation
in OM)

o Model validation check

(against reference

simulation results of

“trusted” model)

• Fully automated through online

CI services

• Diagnostic help to the

developers to locate the error!

44

Prototype Implementation in the
“modelValidation-CI” branch

The OpenIPSL – Ongoing Developments (CI+R)

45

OR

Syntax Error

Model Error

Merging Blocked

All OK !
Merging

Allowed

Multi-domain modeling for gas turbines and power systems

46

 OpenIPSL

 OpenIPSL

 ThermoPower

Interface!

Multi-domain modeling for gas turbines and power systems

47

=

Stochastic Load Model and Influence in

Single-Domain and Multi-Domain Model Response

Load varies d_P in the time interval

between t1 and t1+d_t.

Noise model can be added as real input u.

Noise Model

• Expectation value

• Standard deviation

• Sample Period

Sine wave or ramp containing

the noise can be used to model

the “normal” load variation

Mechanical Power

Joint modeling and simulation of transmission and

distribution power networks

• Work together with Marcelo de Castro

Fernandez , Prof. Janaina Gonçalvez (UFJF,

Brazil) and Maxime Baudette

• Hybrid single-phase three- phase model for

power flow simulation using Modelica as

modeling language. The formulation of such

model was proposed by Jose Mauro Marinho

and Glauco Nery Taranto in the paper:
• [ref]Jose Mauro T. Marinho and Glauco Nery Taranto. A Hybrid

Three-Phase Single-Phase Power Flow Formulation Published in:
IEEE Transactions on Power Systems (Volume: 23, Pages:
1063:1070, Issue: 3, Aug. 2008)

49

https://www.linkedin.com/in/marcelo-de-castro-fernandes-615570b3/
http://www.ufjf.br/inerge/institucional/membros-das-instituicoes/ufjf/prof-a-janaina-goncalves-de-oliveira/

Implementation of DigSilentPowerFactory

Component Models

 MSc Thesis work by Harish Krishnappa

H.Krishnappa@student.tudelft.nl

IEPG, TU Delft

• Models include:

o Synchronous Gen.

o Loads

o Transformer

o Transmission Line

o Exciter

o OEL

o Speed governor

o Steam turbine

o OLTC

o Induction motor

50

mailto:H.Krishnappa@student.tudelft.nl

51

Luigi Vanfretti Tin RabuzinAchour

Amazouz

Mohammed

Ahsan Adib

Murad

Francisco

José Gómez

Jan Lavenius Le Qi Maxime

Baudette
Mengjia

Zhang
Tetiana

Bogodorova

Giusseppe

Laera

Joan Russiñol

Mussons

The OpenIPSL can be found online
• http://openipsl.org

RaPId, a system identification software that uses OpenIPSL can

be found at:

• https://github.com/ALSETLab/RaPId

• http://dx.doi.org/10.1016/j.softx.2016.07.004

Thanks to all my current and

former students, friends and

developers that have supported

the effort!

Our work on OpenIPSL has been published in the

SoftwareX Journal:

• http://dx.doi.org/10.1016/j.softx.2016.05.001

Marcelo

Castro

Miguel

Aguilera

http://openipsl.org/
https://github.com/ALSETLab/RaPId
http://dx.doi.org/10.1016/j.softx.2016.07.004
http://dx.doi.org/10.1016/j.softx.2016.05.001

Part 2: (Phillip Top)
Applications of the OpenIPSL library

and the FMI in GRIDDYN

52

