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Agenda

• About Me (Luigi)

• My Research.

• Recruiting for: ALSETLab

• Part 1: (Luigi Vanfretti)
 Introduction:

 Modeling and Simulation Generalities 
and Modelica 

 The OpenIPSL

 Recent developments

• Part 2: (Phillip Top)
 Applications of the OpenIPSL library 

and the FMI in
 GRIDDYN

• Latter today: Tutorial: (Me + You!)

 Hands-on-Tutorial:

 Overview of the OpenIPSL library

 Overview of the OpenModelica 
environment

 Hans-on-Example

 Do the “preparatory work” so 
that everything is ready to go in 
your computer!
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About Me - http://ALSETLab.com - Dr. Luigi!
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Other facts and numbers:
- Guatemalan and Italian Citizenships.
- Speak/write Spanish (native), English, Italian (spoken, poorly written), Norwegian (Basic)
- 36 years, married (March 4th, 2017) - no kids yet… but really want a dog!
- Close family, brother and wife, live in Woodstock, NY; run Dolce Caffe in Kingston’s Historical Roundout
- Lived in 4 countries, worked in 5…

2016 - 2017
Consultant.

2000 – 2005. 
5 year Electrical Power 
Engineering program @ 
Universidad de San 
Carlos de Guatemala.

YOB. 
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Guatemala

Visiting Researcher 
@ The University of 
Glasgow, Scotland
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MSc and PhD @ RPI 

2010
Post-Doc @ RPI 

Fall 2004
Intern at INDE (National 
Electrification Institute), 
Substations Engineering

2010 – 2017, KTH Royal Inst. Of Tech., 
Stockholm, Sweden
2010: Associate Professor
2012: Docent (Habilitation)
2013: Associate Professor (‘tenured’)

2011 – 2017, SmarTS Lab. Research 
Group

2011 -External 
Scientific Advisor 

(Consultant)
2011 – 2016
Special Advisor
R&D Division

All @ Statnett SF, Oslo, Norway 
(Power System Operator)
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My Research – Cyber-Physical Power Systems
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Recruiting @ ALSETLab

• I’m looking for graduate students to join my team!

• If you know someone that would be interested, please tell them to 

check my website

• See: http://ALSETLab.com
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New Course! Spring 2018 - CPS Modeling, Simulation and Analysis

• Understand cyber-physical systems and 

how to model them.

• Lean about standardized modeling 

languages and compliant tools

• Learn and become proficient with the 

Modelica language

• Learn and apply model-based systems 

engineering concepts and tools (UML, 

SysML using Papyrus RT)

• Apply identification, control and 

optimization techniques to CPS systems

• Apply its use for analysis of:

 Power systems

 Energy efficient building automation

 Multi-domain energy systems

 Cyber-physical systems design and 

analysis 6



Modeling and Simulation of Electrical Power Systems using 

OpenIPSL.org and OpenModelica.org

Part 1: Introduction

Prof. Luigi Vanfretti

Rensselaer Polytechnic Institute, ECSE, Troy, NY

Web: ALSETLab.com

Email: vanfrl@rpi.edu luigi.vanfretti@gmail.com

http://openipsl.org/
http://openmodelica.org/
http://alsetlab.com/
mailto:vanfrl@rpi.edu
mailto:luigi.vanfretti@gmail.com


Outline

o The role of models and simulation
 Generalities

 In power electrical systems

o Modelica and power systems

o The OpenIPSL Project

o The OpenIPSL Library

o Continuous Integration

o On-going developments
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A Fundamental Question: Why do we develop models and perform simulations?

• To reduce the lifetime cost of a 

system

 In requirements: trade-off studies

 In test and design: fewer proto-
types

 In training: avoid accidents

 In operation: anticipate problems!

 Crucial for electrical power systems!

• The prospective pilot sat in the top 

section of this device and was required 
to line up a reference bar with the 

horizon. 1910.

• More than half the pilots who died in 

WW1 were killed in training.
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A Failure to Anticipate  Huge Costs!
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Others: WECC 1996 Break-up, European Blackout (4-Nov.-2006), London (28-Aug-2003), Italy (28-Sep.-2003), Denmark/Sweden (23-Sep.-2003)

Failure!

Existing modeling and 

simulation (and associated) 

tools were unable to 

predict this (and other) 

events.

There are many examples of failures to anticipate problems in power system operation!



The Multiple Roles of Modeling and Simulation in building: 

Complex Cyber-Physical ”Systems-of-Systems”
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Large Number of Vendors for the Final System

A Flying Micro-Grid!

M&S used to test 
prototypes in variety of 

environments.

M&S are used to train users in 
the operational environment –

enhancing learning.
Simulation costs 1/10 of 
running actual scenarios.

Scale of networks: cost-
prohibitive or technically 
impossible for field tests.

M&S used to test and 
validate networking 

protocols in laboratory -
environment acting as a test 

bed.



The Multiple Roles of Modeling and Simulation to develop 

Cyber-Physical Power Systems (aka ‘smart grids’)
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Conceptual Application for the Development of a WT Synchro phasor-Based Controller

Are today’s power system modeling and simulation approaches/tools fit to meet the 

challenges of the cyber-physical world?



Dangers of Models and Simulation

• Falling in love with a model
The Pygmalion effect (forgetting that model 
is not the real world)

• From the Greek myth of Pygmalion, a sculptor who 
fell in love with a statue he had carved.

• Forcing reality into the constraints of a 
model
The Procrustes effect (e.g. economic 
theories)

• Procrustes: "the stretcher [who hammers out the 
metal]”, a rogue smith from Attica that physically 
attacked people by cutting/stretching their legs, 
so as to force them to fit the size of an iron bed.

• A Procrustean bed is an arbitrary standard to which 
exact conformity is forced.

• Forgetting the model’s level of accuracy
Simplifying assumptions forgotten more than 
yesterday’s pudding…
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Power system dynamics challenges for simulation

the tyranny of multiple time-scales  
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Electromagnetic Transients
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Dynamics

Models are simplified (averaged) to 

allow for simulation of very large 

networks.

Ad-hoc solvers have been developed 

to reduce simulation time, but usually 

the “model” is “interlaced” with the 

solver (inline integration)

Generally there are no discrete events.

(Ad-hoc DAE solvers)

This is usually deal with by 

discretizing the model and to 
solve it using discrete solvers.

The presence of large time 
constants and small time 

constants and large amount of 
discrete switches.

Difficult to simulate very large 
networks (in the past?)

The models are simplified further by neglecting 

most dynamics (replacing most differential 

equations by algebraic equations).

(Ad-hoc DAE solvers)



Power System Phenomena Modeled and Discussed from this point on:
power system electromechanical dynamics
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Electromechanical Dynamics in the Western US (1996)

• What was measured: • What was simulated:
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Electromechanical dynamic modeling help to capture ”wide-area” behavior across 

geographical sparse interconnected networks such as these type of oscillations.

Good models are crucial for planning and operation of electrical power networks.
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Power Systems General DAE Model

17[Ref.] F. Milano, Power System Modeling and Scripting, Springer, 2010.



• The power system needs to be in balance, i.e. after a disturbance it must converge to an 

equilibrium (operation point). 

- Q: How can we find this equilibrium? 

- A: Set derivatives to zero and solve for all unknown variables!

• Some observations that can be made:

- The algebraic equations in corresponded to having the fast differential equations at equilibrium all the 

time (in the model and in the timescale considered).

- Finding the equilibrium when most of the variables are unknown is very difficult if when we try to solve this 

equation system simultaneously.

- NB: power system tools do not generally do this!

- Hence, we attempt to sequentially solve the equation system for each t.

- First, we need to solve the algebraic equations         that only depend on the 

algebraic variables… this is were power systems deviates from other fields.

Finding the ”Power Flow” Steady State ”Equilibria”

18

Modelica –compliant tools 

attempt to solve this problem



• Equation set g is separated in two sets of 

algebraic equations:

(1) Is the part which governs how dynamic models will evolve, since they depend on 

both  x and  y , e.g. generators and their control systems.

(2) Is the network model, consisting of transmission lines and other passive components 

which only depends on algebraic variables, y.

Simulation: Starting from a solution of (2) only, equations (1) are solved at equilibrium 
individually; to compute the starting guess of an ad-hoc DAE solver that iterates for (1)-

(2) at each time step.

Power System Modeling and Simulation Approach

19
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Fundamental Implications of the Conventional Power Systems Approach
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Hypotheses
(assumptions)
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Closed-Form
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Analyst Duality

Specialized Modeler Familiar with 
the Domain Specific Platform
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Specific Platform

Fixed Model is 
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one specific solver



Practical Implications of the Conventional Power Systems Approach
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PSS/E
Status Quo:
Multiple simulation tools, with their own 

interpretation of different model features and 

data “format”.

Implications of the Status Quo:

- Dynamic models can rarely be shared in a 

straightforward manner without loss of 

information on power system dynamics.

- Simulations are inconsistent without drastic 

and specialized human intervention.

Beyond general descriptions and parameter 

values, a common and unified modeling 

language would require a  formal mathematical 

description of the models – but this is not the 

practice to date.



Why open standard-based modeling languages?

• Modeling tools first gained

adoption as engineers looked for

ways to simplify SW development

and documentation.

• Today’s modeling tools and their

use cases have evolved.

• Now: need for addressing both
system level design and SW

development/construction.

22

(2015)



Why equation-based modeling?

Equation—based modeling:

• Defines an implicit (not explicit) relation between variables. 

• The data-flow between variables is defined right before simulation of the 

model (not during the modelling process!)

• A system can be seen as a complete model or a set of individual 

components.

• The user is (in principle) only concerned with the model creation,

and does not have to deal with the underlying simulation engine 

(only if desired).

• It also allows decomposing complex systems into simple sub-

models easier to understand, share and reuse
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CSSL (1967) introduced a 

special form of “equation”:

variable = expression

v = INTEG(F)/m

Programming languages usually 

do not allow equations!



Graphical Equation-Based Modeling

• Each icon represents a physical 

component (i.e. a generator, wind 

turbine, etc.)

• Composition lines represent the actual 

interconnections between components 

(e.g. generator to transformer to line to …)

• Physical behavior of each component is 

described by equations.

• There is a hierarchical decomposition of 

each component.

24



Key: standardized and open language specification 

is a (computer) modeling language, it is not a tool!

• Modelica is a free/libre object-oriented 

modeling language with a textual definition to 

describe physical systems using differential, 

algebraic and discrete equations. 

• A Modelica modeling environment is needed to 

edit or to browse a Modelica model graphically 

in form of a composition diagram (= schematic). 

• A Modelica translator is needed to transform a 

Modelica model into a form (usually C-code) 

which can be simulated by standard tools.

• A Modelica modeling and simulation 

environment provides both of the functionalities 

above, in addition to auxiliary features (e.g. 

plotting)

25

http://modelica.readthedocs.io/en/latest/#

http://modelica.readthedocs.io/en/latest/


modeling and simulation environment (tool) tasks
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Acasual Modeling and it’s Implications on Model/Tool Development

• Acasual Modeling implicitly leads to faster 

development and lower maintenance for models 

(and even tools)

• The acausality makes Modelica library classes more  

reusable than traditional classes containing 

assignment statements where the input-output 

causality is fixed. 

• Modelica Compiler performs Causalization

o It flattens the model and then transform and 

sort all equations that give the model 

description. 

o Aim is to match each equation to a variable, 

hence the term “matching” process, doing an 

Index reduction of the DAEs and transform 

them to ODEs

27

Approach used 
by Modelica Tools

Approach used 
by Power 

System Tools

User Defined Models 

in some PS Tools and 

Generic Tools 

(Simulink)



Present 
Modeling 

and 
Simulation 

issues

Causal 
Modeling

Model 

Exchange

Inconsis-

tency

Modeling 
limitations

• The order of computations is decided at

modelling time

• Models are black boxes whose parameters are

shared in a specific “data format”

• For large models this requires translation into the
internal data format of each program

• There is no guarantee that the same
standardized model is implemented in the same

way across different tools

• Even in Common Information Model (CIM) v15,

only block diagrams are provided instead of
equations

• Most tools make no difference between “solver”

and “model” – in many cases solver is implanted
in the model

Acausal Causal

R*I = v; i := v/R; 

v := R*i; 

R := v/i; 

Why                       for power systems?
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• Previous and Related Efforts

o Modelica for power systems was first attempted in the early 2000’s (Wiesmann & Bachmann, Modelica 2000) -
“electro-magnetic transient (EMT) modeling” approach.

 SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014); supports multiple modeling
approaches –i.e. 3phase, steady-state, “transient stability”, etc.

o Electro-mechanical modeling or “transient stability” modeling:

 Involves electro-mechanical dynamics, and neglects (very) fast transients

 For system-wide analysis, easier to simulate/analyze - domain specific tools approach

o ObjectStab (Larsson, 2002; Winkler, 2015) adopts ”transient stability” modeling.

o The PEGASE EU project (2011) developed a small library of components in Scilab, which where ported to proper
Modelica in the FP7 iTesla project (2012-2016).

o The iPSL - iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was released during 2015.
Most models validated against typical power system tools.

o F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large power networks
using Modelica, and a dedicated library to investigate them using the Open Modelica compiler.

OpenIPSL takes iPSL as a starting point and moves it forward (this presentation).

and Power Systems

29



(3) Decrease of avoidance forces
• SW-to-SW validation gives quantitatively an

similar answer than domain specific tools.

• Accuracy (w.r.t. to de facto tools) more
important than performance

and Power Systems

Why another library for power systems?

Social Aspects (Vanfretti et al, Modelica 2014)

• Resistance to change: an irrational and 
dysfunctional reaction of users (and 
developers?)

o Users of conventional power system tools 
are skeptical about any other tools 
different to the one they use (or develop), 
and are averse about new technologies 
(slow on the uptake)

• Change agents contribute (+/-) to address 
resistance through actions and interactions.

30

A never-ending effort!
• The library has served to bridge the gap

between the Modelica and power systems
community by:

• Addressing resistance to change (see above)

• Interacting with both communities – different
levels of success…

(2) Propose
a common human and computer-readable 
mathematical “description”: use of Modelica for 
unambiguous model exchange.

(1) Strategy do not impose the use of a specific 
simulation environment (software tool), instead,



The OpenIPSL Project

• http://openipsl.org

• Built using the Modelica 

language:

• Distributed with the MPL2 

license:

31

Free as in Puppy!

Needs a lot of your love and care to grow and be happy!

http://openipsl.org/


• KTH SmarTS Lab (my former research team) actively participated in the group 
or partners developing iPSL until the end of the iTesla project (March 2016)

• iPSL is a nice prototype, but we identified the following issues:
o Development: Need for compatibility with OpenModelica, (better) use of object 

orientation and proper use of the Modelica language features.

o Maintenance: Poor harmonization, lack of code factorization, etc.

o Human issues: The development workflow was complex
 Different parties with disparate objectives, levels of knowledge, philosophy, etc. 

• OpenIPSL started as a fork of iPSL in 2016, and has now largely evolved!
• OpenIPSL is hosted on GitHub at http://openipsl.org

• OpenIPSL is actively developed by ALSETLab (formerly SmarTS Lab) members 
and friends, as a research and education oriented library for power systems
 it is ok to try things out ! 

New research requirements and the experiences from previous effort indicated: 

- a clear need for a different development approach –

one that should address a complex development & maintenance workflow!

The OpenIPSL Project - Origins
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Fork: copy of a project going in a 
different development direction

http://openipsl.org/


The OpenIPSL Library – Key Feautures

OpenIPSL is an open-source Modelica library

for power systems

• It contains a set of power system 

components for phasor time domain
modeling and simulation

• Models have been validated against a 

number of reference tools (mainly PSS/E)

OpenIPSL enables:

• Unambiguous model exchange

• Formal mathematical description of models

• Separation of models from tools/IDEs and 
solvers

• Use of object-oriented paradigms
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The OpenIPSL Library – WT Example
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The OpenIPSL Library – Network Example
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Resulting Parameter Declaration

Resulting Class Instantiation

Class Connections



Many Application Examples Developed!!!

The OpenIPSL Library – Application Examples

36

Klein-Rogers-Kundur 2-Area 4-Machine System

IEEE 9 Bus IEEE 14 Bus

Namsskogan Distribution Network



The OpenIPSL Library – providing a good “initial guess”

• An initial guess for all algebraic, continuous and discrete variables 
need to be provided to solve a numerical problem!

• When solving differential equations, one needs to provide the initial 
value of the state variables at rest.

• In Modelica, initial values can be either solved or specified in many 
ways, we use the following

• Using the ”initial equation” construct:

 initial equation 

• x = some_value OR x = expression to solve

• Setting the (fixed=true, start=x0) attribute when instantiating a 
model when the start value is known (or possible to calculate)

• If nothing is specified, set the default would be a guess value 
(start= 0, fixed=false). 

• In the OpenIPSL models we do the following:

• The initial guess value is set with (fixed = false) for initialization. 

• Model attributes are treated as parameters with value (fixed = 
true), 

37

• In OpenIPSL we use a power flow 

solution from an external tool (e.g. 

PSAT or PSS/E) as a starting point 

to compute initial guess values 

through parameters within each 

model.

• The power flow solution is NOT 

the initial guess value itself.

• Aim is to provide a better 

“initial guess” to find the initial 

values of the DAE system.



Third order 

model from 

PSAT 

implemented in 

OpenIPSL

The OpenIPSL Library – “initial guess” example
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The OpenIPSL Project Documentation

• Documentation of the code changes:

• Explicit messages in commits

and pull-requests

• Documentation of the project

 Presentation

 User guide

 Dev. guidelines & How to contribute

 The documentation is written in 

reStructuredText (reST) hosted on 

http://openipsl.readthedocs.io/

• Note: Model documentation is not included, 

users are referred to literature, textbooks and 

the proprietary documentations. 
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http://openipsl.readthedocs.io/


The OpenIPSL’s Project - Continuous Integration (CI) Service

40

• A CI service was implemented and integrated to the repository. The Modelica 

support was achieved with the following architecture:

• Travis as CI service provider

• Docker as the “virtualization” architecture

• DockerHub to host a Docker image with Python & OpenModelica

• The CI performs automated syntax checks on the library.

New changes 

are submitted as 

a new pull 

request to the 

master branch 

The pull request 

triggers the 

Travis CI

The tailored 

Docker image 

is pulled
The reference 

traces are 

pulled from a 

dedicated 

server

The latest version of 

the library containing 

the changes is pulled 

from GitHub

The Docker is 

instantiated to 

create a 

replicable 

environment 

where the tests 

are carried out

The pass / fail 

flag from the 

tests on Travis is 

sent to Github



Go to the OpenIPSL Github repo 
https://github.com/openipsl , see runTest.py

The OpenIPSL’s CI Commit Output (Syntax Check Workflow)
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Click to see the IO from Travis

Results from CI testing on 

syntax check on several 

“Application Examples”

https://github.com/openipsl


•OpenIPSL.org organization in Github! (Prof. Dietmar Winkler)
•Website will be also hosted there!

The OpenIPSL – Ongoing Developments and Future Work!

• Library Improvements (Tin Rabuzin, Maxime Baudette)

• 100% Compatibility with OM (100% Syntax Check, ~100% 

Simulation for components) through efforts in Continuous 

Integration adoption

• Change in the models to include inheritance (code factorizing)

• Fixing and validating network models – application examples 

(thanks to CI)

• ENTSO-E IOP Models (Francisco Gomez Lopez)

• Proof of concept and test model

• Excitation system and small network model
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http://me.dwe.no/
https://github.com/tinrabuzin
http://www.baudette.fr/
https://github.com/tinrabuzin
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The OpenIPSL – Ongoing Developments and Future Work!

• Efforts within the openCPS project

• New Component Models
• New components for the OpenIPSL being developled:

• Process noise (stochastic) pdf-based load models

• Frequency estimation models

• PMU “Container” Block (frequency estimation + packaging)

• Control systems for islanded operation and automated resynch

• Multi-domain modeling for gas turbines and power systems
• Based on ThermoPower and OpenIPSL

• Miguel Aguilera, et al.

• More!

• Joint modeling and simulation of transmission (positive 
sequence) and distribution (three-phase) power networks

• Marcelo de Castro Fernandez and Prof. Janaina Gonçalvez (UFJF, Brazil)
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https://github.com/maguilerac
https://www.linkedin.com/in/marcelo-de-castro-fernandes-615570b3/
http://www.ufjf.br/inerge/institucional/membros-das-instituicoes/ufjf/prof-a-janaina-goncalves-de-oliveira/


The OpenIPSL – Ongoing Developments (CI+R)

• CI + Regression Testing

• A two-stage process

o Modelica syntax check 

(against Modelica 

language implementation 
in OM)

o Model validation check 

(against reference 

simulation results of 

“trusted” model)

• Fully automated through online 

CI services

• Diagnostic help to the 

developers to locate the error!
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Prototype Implementation in the 
“modelValidation-CI” branch



The OpenIPSL – Ongoing Developments (CI+R)
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OR

Syntax Error

Model Error

Merging Blocked

All OK !
Merging 

Allowed



Multi-domain modeling for gas turbines and power systems
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 OpenIPSL

 OpenIPSL

 ThermoPower

Interface!



Multi-domain modeling for gas turbines and power systems

47

=



Stochastic Load Model and Influence in 

Single-Domain and Multi-Domain Model Response

Load varies d_P in the time interval

between t1 and t1+d_t.

Noise model can be added as real input u.

Noise Model

• Expectation value

• Standard deviation

• Sample Period

Sine wave or ramp containing

the noise can be used to model

the “normal” load variation

Mechanical Power



Joint modeling and simulation of transmission and 

distribution power networks

• Work together with Marcelo de Castro 

Fernandez , Prof. Janaina Gonçalvez (UFJF, 

Brazil) and Maxime Baudette

• Hybrid single-phase three- phase model for 

power flow simulation using Modelica as 

modeling language. The formulation of such 

model was proposed by Jose Mauro Marinho

and Glauco Nery Taranto in the paper:
• [ref]Jose Mauro T. Marinho and Glauco Nery Taranto. A Hybrid 

Three-Phase Single-Phase Power Flow Formulation Published in: 
IEEE Transactions on Power Systems (Volume: 23, Pages: 
1063:1070, Issue: 3, Aug. 2008)
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https://www.linkedin.com/in/marcelo-de-castro-fernandes-615570b3/
http://www.ufjf.br/inerge/institucional/membros-das-instituicoes/ufjf/prof-a-janaina-goncalves-de-oliveira/


Implementation of DigSilentPowerFactory

Component Models

 MSc Thesis work by Harish Krishnappa

H.Krishnappa@student.tudelft.nl

IEPG, TU Delft

• Models include:

o Synchronous Gen.

o Loads

o Transformer

o Transmission Line

o Exciter

o OEL

o Speed governor

o Steam turbine

o OLTC

o Induction motor
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mailto:H.Krishnappa@student.tudelft.nl
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The OpenIPSL can be found online
• http://openipsl.org

RaPId, a system identification software that uses OpenIPSL can 

be found at:

• https://github.com/ALSETLab/RaPId

• http://dx.doi.org/10.1016/j.softx.2016.07.004

Thanks to all my current and 

former students, friends and 

developers that have supported 

the effort!

Our work on OpenIPSL has been published in the 

SoftwareX Journal:

• http://dx.doi.org/10.1016/j.softx.2016.05.001

Marcelo 

Castro

Miguel 

Aguilera

http://openipsl.org/
https://github.com/ALSETLab/RaPId
http://dx.doi.org/10.1016/j.softx.2016.07.004
http://dx.doi.org/10.1016/j.softx.2016.05.001


Part 2: (Phillip Top)
Applications of the OpenIPSL library 

and the FMI in GRIDDYN
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