
Optimization Methods for the Unit Commitment Problem

Jim Ostrowski

Industrial and Systems Engineering
University of Tennessee jostrows@utk.edu

1 / 38



Introduction Unit Commitment

The Unit Commitment Problem

The Unit Commitment (UC) problem is a large scale MINLP that
finds a low-cost generating schedule for power generators.

These problems have quadratic objective functions, and transmission
constraints can be highly nonlinear. We are going to ignore
transmission in this talk!

These problems are typically solved as mixed integer programs.

2 / 38



Introduction Unit Commitment

Mixed Integer Linear Program

A mixed integer linear program is defined as:

max cx+ hy (1)

s.t. Ax+Gy ≤ b (2)

x ≥ 0 integral (3)

y ≥ 0 (4)

where G is an m× p matrix and y is a p-vector.

We call S := {(x, y) ∈ Zn+ × Rp+ : Ax+Gy ≤ b} of feasible solutions
is called a mixed integer linear set.

A mixed 0/1 set just restricts the x variables to be either 0 or 1.

The linear relaxation is given by allowing x to take continuous values:

P0 := {(x, y) ∈ Rn+ × Rp+ : Ax+Gy ≤ b}

3 / 38



Introduction Unit Commitment

Methods For Solving Integer Programs

More notation:

MILP: max {cx+ hy : (x, y) ∈ S}

where
S := {(x, y) ∈ Zn+ × Rp+ : Ax+Gy ≤ b}

Let (x∗, y∗) be the optimal solution to MILP and let the objective
value be z∗

Let P0 be the linear relaxation of S. Let (x0, y0) be the optimal
solution (with solution value z0) to:

max {cx+ hy : (x, y) ∈ P0}

Since S ⊆ P0, we know that z∗ ≤ z0, so the linear relaxation gives us
an upper bound.

4 / 38



Introduction Unit Commitment

What if x0 is fractional? Branch and Bound

Suppose you solve the LP relaxation and the x solution is fractional?
Say x0j is fractional (say f := x0j ). Define sets:

S1 := S ∩ {(x, y) : xj ≤ bfc}, S2 := S ∩ {(x, y) : xj ≥ dfe}

Every integer solution is in one of S1 or S2. So, the best solution to:

MILP1: max {cx+hy : (x, y) ∈ S1} MILP2: max {cx+hy : (x, y) ∈ S2}

is equal to that of MILP.

5 / 38



Introduction Unit Commitment

Branch and Bound

Similar to S, create:

P1 := P0 ∩ {(x, y) : x ≤ bfc}, P2 := P ∩ {(x, y) : x ≥ dfe}

and look at

LP1: max {cx+hy : (x, y) ∈ P1} LP2: max {cx+hy : (x, y) ∈ P2}

6 / 38



Introduction Unit Commitment

More B&B

Suppose LPi is infeasible. Then Si ⊆ Pi = ∅. This subproblem is
pruned by infeasibility

Let (xi, yi) be the optimal solution to LPi with objective zi.

If xi is integer, then (xi, yi) is the optimal solution to MILPi. Node i
is pruned by integrality. Since Si ⊆ S, then zi ≤ z∗, so zi is a lower
bound for MILP.
If xi is not integer and zi is smaller than the best known integer
solution, then Si cannot contain a better solution, we prune i by bound.
If xi is not integer and zi is better than the best known lower bound,
then Si may still contain an optimal solution to MILP. Find a fractional
component of xi, xij ′ , and let f = xij ′ . Define sets:

Si1 := Si ∩ {(x, y) : xj ′ ≤ bfc}, Si2 := S ∩ {(x, y) : xj ′ ≥ dfe}

7 / 38



Introduction Unit Commitment

Drivers of Computational Performance for Integer
Programming in General

Looking at the branch-and-bound algorithm, we can identify 3 key
drivers of performance:

Quality of upper bound: Better formulations can reduce the LP bound,
leading to more pruning.
Quality of incumbent solution: The sooner you find good solutions, the
quicker you can prune nodes.
Number of integer variables: more integer variables can (possibly) lead
to more branches and larger trees.

8 / 38



Introduction Unit Commitment

Impact of Optimization on UC

Integer programming has only gained popularity in the past 10-15
years.

Before that, Lagrangian relaxation methods were used to find decent
solutions to these scheduling problems.

The switch paid off. MISO schedules more than 1,500 power plants
throughout the Midwest and Canada.

Switching to IP saved them between 2.1 and 3.0 billion dollars from
2007 to 2010

This won them the prestigious Edelman Award from INFORMS

Since then, we have gotten a lot better at solving these problems!

9 / 38



Introduction Unit Commitment

The Basic Problem

The UC Problem

Minimize
∑
t∈T

∑
j∈J
cj(pjt)

subject to ∑
j∈J
p
j
t ≥ Dt, ∀ t ∈ T

pj ∈ Πj, ∀j ∈ J.

c(pjt) gives the cost of generator j producing pjt units of electricity at
time t.

In every time periods, demand Dt must be met.

Each generator must work within its physical limits (ramping
constraints, minimum shut down times, etc.).

10 / 38



Introduction Unit Commitment

Physical Constraints of Generators

Convex Production Costs

Minimum & Maximum Output Levels: If the generator is on, it
must produce between P and P units of power.

Ramping Constraints: Power output cannot change too rapidly over
a short period of time.

Minimum Up (Down) Time: When a generator is turned on (off),
it must stay on for at least UT (DT) time units.

Downtime Dependent Startup Costs: The cost of turning on a
generator is dependent on how long the generator has been off.

11 / 38



Introduction Unit Commitment

Basic Approach

A strategy employed by many researchers is to investigate tight
formulations for a generic generator, i.e., tight descriptions of Π.

This work will employ the same tactic.

Main Result:

We will give a tight and compact (convex hull) description of the feasible
operating schedule of a generator. Moreover, this description is fairly
flexible and can enable a variety of additional physical constraints

12 / 38



Introduction Unit Commitment

Why This Approach?

Integer Programs are best solved by
looking at the linear relaxation.

The convex hull of an IP is the smallest
polyhedron containing all of the feasible
points.

The worse the linear relaxation
resembles the convex hull, the harder
the problem is to solve.

13 / 38



Introduction Unit Commitment

A Brief Outline

First, we will discuss some previous work on polyhedral results related
to electric generator schedules.

Then, we will move into more general polyhedral theory and present
an extension of Balas’ classical theorem.

Lastly, we will tie the two together to give our compact convex hull
result.

14 / 38



Introduction Unit Commitment

Polyhedral Results for Generator Scheduling

“1-binary variable model”

I can write the feasible region of a generator using two variables
per time period.

Let pt be the (continuous) variable representing power output.

Let ut be the (binary) variable representing if the generator is
on/off.

The convex hull description of this polyhedron is known if there is
no ramping constraint, but it is large (exponential).

But, a polynomial-time cutting-plane method exists (Lee, Lueng,
Margot: 2004).

15 / 38



Introduction Unit Commitment

What is a cutting-plane method?

If the solution to the linear relaxation is outside of the convex hull,
add a linear constraint that will remove it from the relaxation.

16 / 38



Introduction Unit Commitment

3 Binary Variable Model

3-Bin

Now we use 4 variables per time period:

Let pt be the (continuous) variable representing power output.

Let ut be the (binary) variable representing if the generator is on
at time t.

Let vt be the (binary) variable representing if the generator is
turned on at time t.

Let wt be the (binary) variable representing if the generator is
turned off at time t.

Yes, the additional variable are redundant. But, they allow us to write
tight descriptions of the polytope with no ramping constraints (Rajan
& Takriti: 2005).

17 / 38



Introduction Unit Commitment

Not Quite the Same Thing, but Nice

A slightly different approach to generator scheduling comes from
Frangioni and Gentile, who solve the single unit commitment problem
(1UC) in polynomial time using dynamic programming.

The 1UC model assumes prices are fixed, then optimizes a single unit’s
profit.

The trick: Since the prices are known, it is easy to compute the exact
production schedule at times in the interval [a, b] if is is known for
sure that the generator turns on at time a and then shuts down at
time b (Economic Dispatch Problem).

There are at most Tc2 many valid turn on/turn off time intervals, so
you only need to consider combining the corresponding production
schedules, where the only constraint is the minimum downtime
constraint.

18 / 38



Introduction Unit Commitment

Economic Dispatch Problem

If it is know that the generator is turned on at a and off at b, the
profit during this time period is solved via the linear program:

p
[a,b]
i ≤ 0 ∀i < a and i > b

−p
[a,b]
i ≤ −P ∀i ∈ [a, b]

p
[a,b]
i ≤ min(P, SU+ (i− a)RU, SD+ (b− i)RD) ∀i ∈ [a, b]

p
[a,b]
i ≤ p[a,b]i−1 min(RU, SU+ (b− i)RD− P) ∀i ∈ [a+ 1, b]

p
[a,b]
i−1 ≤ p

[a,b]
i +min(RD, SU+ (i− a)RU− P) ∀i ∈ [a+ 1, b].

19 / 38



Introduction Unit Commitment

An Aside: Shortest Path Problem

The shortest path problem attempts to find the shortest path between
two given nodes on a graph.
This can be solved very easily (Dijkstra’s Algorithm).

20 / 38



An Ideal Formulation

A Dynamic Programming Approach to 1UC

The 1UC model is solved via a shortest path problem in the following
digraph:

Let s be the source node, t be the sink node.

Let v[a,b] represent the action of turning on the generator at time a
and shutting it off at time b. The cost of going through node v[a,b] is
equal to negative the profit from the economic dispatch problem.

There is an arc leaving (entering) s (t)and entering (leaving) ever
other vertex.

Arc (v[a,b], v[c,d]) exists if b+ mindowntime ≤ c.
Digraph is acyclic, shortest path is easily found.

21 / 38



An Ideal Formulation

An Example: Min Up/Downtime=5

S

v[1,5]

v[1,6]

v[10,15]

v[11,16]

T

S

v[1,5]

v[1,6]

v[10,15]

v[11,16]

T

22 / 38



An Ideal Formulation

Remarks:

The dynamic programming approach to 1UC is a fantastic result, but
it hasn’t been very helpful for multi-generator models.

Why? The DP only considers Tc2 specific schedules, not all possible
production schedules. There hasn’t been an obvious way of extending
this idea to more general methods.

Fundamental Problem:

Consider any shortest path problem where edges & vertices represent
actions represented by polyhedra. How do you efficiently represent the
set of feasible solutions? To answer this question, we revisit a classic
polyhedral result.

23 / 38



An Ideal Formulation

Balas and the Union of Polyhedra

Theorem

Consider m bounded polyhedra Pi := {x ∈ Rn | Aix ≤ bi}. Define
P = conv(∪i∈[m]Pi)). Then the polyhedron

Y =


Aixi ≤ γibi, i ∈ [m]∑
i∈[m] x

i = x∑
i∈[m] γi = 1

γi ≥ 0, i ∈ [m]

provides an extended formulation of P. So, projecting Y back down to the
original variables gives you P.

24 / 38



An Ideal Formulation

???

It is a lot of math, but the basic idea is that it tells you how find the
smallest polyhedron that contains 2 or more polyhedron.

It allows you to model “My solution can satisfy this set of equations
or that set of equations.”

In the context of our dynamic program, it allows you to be model the
situation where you can pick a solution from 1 (and only 1) Economic
Dispatch polyhedron.

This is not sufficient, since we might want to be on in 2 or more
intervals!

Instead, we need to consider sums of polyhedra.

25 / 38



An Ideal Formulation

Weighted Minkowski Sums of Polyhedra

What do I mean by sums?

Think of polyhedra as bins. I want to construct a solution in Rn
by grabbing vectors in each of the Pis.

I can assume that I do not grab two or more unique vectors from a
single bin.

The γ terms represent the weight of each of my vectors.

The set of γ terms are constrained (must be in Γ).

Investigate S := {
∑m
i=1 γiPi | (γ1, . . . , γm) ∈ Γ }

26 / 38



An Ideal Formulation

In the context of UC

Thinking of our dynamic programming problem, this framework allows
be to build a schedule by visiting different nodes in the graph.

If I visit node v[a,b], I can produce in periods [a, b].

However, I have constraints on how I build my solution! If I visit v[a,b]
I cannot visit v[a+1,b]!

This restriction can be modeled by adding constraints on the γ terms
(where γ represents if I visit a node or not).

27 / 38



An Ideal Formulation

Extended Formulation of Sums

Let Γ be any polyhedron in Rm.

Theorem

Consider m nonempty polyhedra Pi = {x ∈ Rn | Aix ≤ bi}, i ∈ [m].
Consider the polyhedron P := {

∑m
i=1 γiPi | (γ1, . . . , γm) ∈ Γ } and consider

another polyhedron Y ⊆ Rn+nm+m defined by

Y :=


Aixi ≤ γibi, i ∈ [m]∑m
i=1 x

i = x

(γ1, . . . , γm) = γ ∈ Γ.

Then P = projx(Y) := {x ∈ Rn | ∃(x1, . . . , xm, γ) ∈
Rnm+m s.t. (x, x1, . . . , xm, γ) ∈ Y}.

28 / 38



An Ideal Formulation

Takeaway

We can use this theorem and the dynamic programming problem to
generate a convex hull description of the “feasible dispatch
polyhedra.”

29 / 38



An Ideal Formulation

Sums of Dispatch Polytope

Let γ[a,b] be multiplier of D[a,b].

Generator Polytope

D
def
=



A[a,b]p[a,b] ≤ b[a.b]γ[a,b] ∀[a, b] ∈ T∑
[a,b]∈T

p[a,b] = p

∑
{[a,b]∈T | i∈[a,b+mindowntime]}

γ[a,b] ≤ 1 ∀i. ∈ T

γ[a,b] ≥ 0
p[a,b] ∈ Rn+.

30 / 38



An Ideal Formulation

Remarks

There is a compact & tight formulation for generators. Moreover, this
a very general framework. Any additional constraints can be added so
long as Γ remains integer and the feasible dispatch problem remains a
polytope.

Allows for:

Arbitrary startup costs
On-time dependent ramping constraints (to model startup and
shutdown trajectories)
Multistage Stochastic UC
and more!

Cons of this approach:

Tight but large! Tc3 many variables per generator. (Though only T
many binomial variables are required).

31 / 38



An Ideal Formulation

Lift and Project Cuts

Using the full model results in a huge linear programming problem.
The LP takes too long to solve!

Another idea is to use the 3-bin model in the formulation but use the
convex hull description to generate cuts.

This is called lift and project

32 / 38



An Ideal Formulation

Lift and Project: A Picture

The basic idea: We know the extended space, we are trying to
generate the projected space.

If we have a point in the projected space, we lift it to the extended
space.

If the lifted point is in the convex hull, than the original point is as
well.

If not, we can easily generate a separating cut in the extended space.
Projecting that cut gives us a cut in the projected space.

33 / 38



Identical Generators

Identical Generators

Sometimes there are identical generators in the UC problem.

Unfortunately, we cannot aggregate them in the 3-bin model.

However, we can easily account for additional identical generators in
the extended formulation!

Using the dynamic program context, this can be seen by performing
multiple walks along the network.

34 / 38



Identical Generators

A Picture

S

v[1,5]

v[1,6]

v[10,15]

v[11,16]

T

35 / 38



Identical Generators

How Often Are There Identical Generators?

Looking at a test case from California ISO (CAISO):

Of 610 generators, 465 are unique, giving a reduction of 20%!
Performing this aggregation solves problems 40% faster (from about 2
minutes to about 1 minute)!

36 / 38



Identical Generators

Results

The data shows: There are a lot of almost identical generators.

Aggregating near identical generators can reduce the number of
generators from 610 to 315, for a 48% decrease (compared to 24%
exactly identical).

Solving the relaxed problems will be, we hope, much faster!

The solutions are not always feasible, but they can be easily modified
to become feasible.

These modified solutions tend to be very close to the optimal solution
(bases on limited tests, within 0.1%).

37 / 38



Identical Generators

Current Work

Current Work

The proposed methods tend to work well in these “sythentic” test
problems.

Do they work well for real? We are in the process of finding out!

There are many identical generators in a typical MISO UC
instance. We are currently trying to implement this (and more)
into their code

Questions for the Future?

We have a very tight IP formulation for UC. Can we solve it with
cutting planes only (no branching)?

If so, we can generate more accurate prices.

Can we use this model in expansion problems?

What are the economic/market consequences of identical/nearly
identical generators?

38 / 38


	Introduction
	Unit Commitment

	An Ideal Formulation
	Identical Generators

