

CURENT Overview

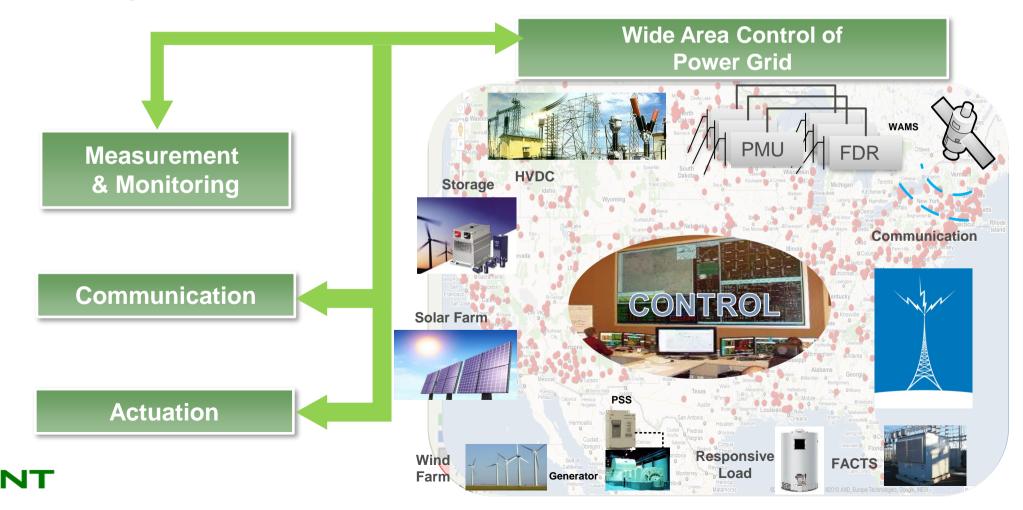
Kevin Tomsovic Center Director

Agenda

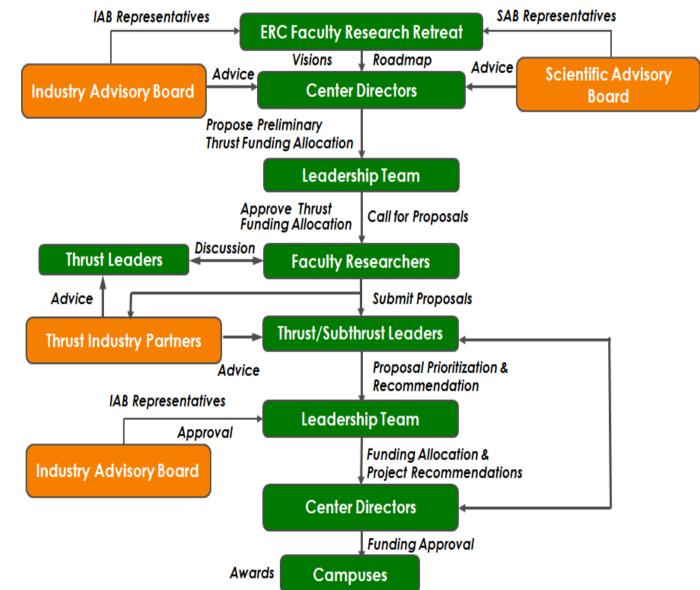
1:45 - 2:00Sustainability of the Center - K. Tomsovic2:00 - 2:15Industry membership - Discussion on post-graduation structure2:15 - 2:30Break	1:00 - 1:15	Welcome & State of the Center – K. Tomsovic
2:00 - 2:15 Industry membership - Discussion on post-graduation structure 2:15 - 2:30 Break 2:30 - 3:45 Input from industry on future research directions Demonstrating center contributions with LTB/HTB demos – F. Wang and F. Li Grid forming converters – L. Tolbert Blurring of transmission and distribution – F. Li Electrification of transportation – K. Bai Resilience – A. Stankovic Market incentives Protection and control with inverter based resources – J. Chow Other ideas – storage, hydrogen, small modular reactors, HVDC, off-shore wind, cyber-physical security, etc. 	1:15 – 1:45	Industry projects overview and roll call of pressing needs – Y. Liu
2:15 - 2:30 Break 2:30 - 3:45 Input from industry on future research directions Demonstrating center contributions with LTB/HTB demos – F. Wang and F. Li Grid forming converters – L. Tolbert Blurring of transmission and distribution – F. Li Electrification of transportation – K. Bai Resilience – A. Stankovic Microgrids Market incentives Protection and control with inverter based resources – J. Chow Other ideas – storage, hydrogen, small modular reactors, HVDC, off-shore wind, cyber-physical security, etc.	1:45 – 2:00	Sustainability of the Center - K. Tomsovic
 2:30 – 3:45 Input from industry on future research directions Demonstrating center contributions with LTB/HTB demos – F. Wang and F. Li Grid forming converters – L. Tolbert Blurring of transmission and distribution – F. Li Electrification of transportation – K. Bai Resilience – A. Stankovic Microgrids Market incentives Protection and control with inverter based resources – J. Chow Other ideas – storage, hydrogen, small modular reactors, HVDC, off-shore wind, cyber-physical security, etc. 	2:00 – 2:15	Industry membership - Discussion on post-graduation structure
 Demonstrating center contributions with LTB/HTB demos – F. Wang and F. Li Grid forming converters – L. Tolbert Blurring of transmission and distribution – F. Li Electrification of transportation – K. Bai Resilience – A. Stankovic Microgrids Market incentives Protection and control with inverter based resources – J. Chow Other ideas – storage, hydrogen, small modular reactors, HVDC, off-shore wind, cyber-physical security, etc. 	2:15 – 2:30	Break
3:45 – 4:00 Wrap-up discussion	2:30 – 3:45	 Demonstrating center contributions with LTB/HTB demos – F. Wang and F. Li Grid forming converters – L. Tolbert Blurring of transmission and distribution – F. Li Electrification of transportation – K. Bai Resilience – A. Stankovic Microgrids Market incentives Protection and control with inverter based resources – J. Chow Other ideas – storage, hydrogen, small modular reactors, HVDC, off-shore wind, cyber-
	3:45 – 4:00	Wrap-up discussion

Meeting Objectives

- Update on the status of the Center
- Discuss sustainability of the Center
- Review research contributions with industry
- Strategic planning for the Center for near and long term


CURENT – An NSF/DOE ERC

- Selected by National Science Foundation (NSF) and Department of Energy (DOE) from a few hundred proposals across all engineering disciplines.
- Base budget: ~\$4M/year for 10 years, ramping down in Years 9 and 10. Other funding: \$5-6M/year
- First and only ERC devoted to power grid (transmission).
- Four universities in the US (UTK, RPI, NE, TU)
- Industry partnership program (35 members as of March 2021)
- Center began Aug. 15th 2011. Funding reviewed every year but we have received full funding.
- CURENT students since inception: ~134 Ph.D, 96 MS, 131 BS


Original CURENT Vision

- A nation-wide transmission grid that is fully monitored and dynamically controlled for high efficiency, high reliability, low cost, better accommodation of renewable sources, full utilization of storage, and responsive load.
- A new generation of electric power and energy systems engineering leaders with a global perspective coming from diverse backgrounds.

Project Planning Process Needs to be modified going forward

- Annual research retreat held in Spring
- Meeting in July following the IEEE PES General Meeting to finalize projects for next year
- Virtual since March 2020

Research Roadmap

Needs to be Extended

Year 1~3	Year 4~6	Year 7~10		
Generation I	Generation II	Generation III		
Regional grids with >20% renewable (wind, solar), and grid architecture to include HVDC lines	Reduced interconnected EI, WECC and ERCOT system, with >50% renewable (wind, solar) and balance of other clean	Fully integrated North American system with >50% energy (>80% instantaneous) inverter based variable sources (wind, solar) and		
System scenarios demonstrating a	energy sources (hydro, gas, nuclear)	balance of conventional (hydro, gas, nuclear)		
variety of seasonal and daily operating conditions	Grid architecture to include UHV DC lines connecting with regional multi-terminal DC	Grid architecture to include UHV DC super- grid, interconnecting overlay AC grid and		
Sufficient monitoring to provide measurements for full network	grids, and increased power flow controllers	FACTS devices		
observability and robustness against contingencies, bad topology or	System scenarios demonstrating complete seasonal and daily operating conditions and associated contingencies, including	Controllable loads (converter based, EV, responsive) and storage for grid support		
measurement data	weather related events on wind and solar	Fully monitored at transmission level (PMU		
Closed-loop non-local frequency and voltage control using PMU	Full PMU monitoring at transmission level with some monitoring of loads	temperature, etc.) and extensive monitoring of distribution system		
measurements	Fully integrated PMU based closed-loop	Closed loop control using wide area		
Renewable energy sources and responsive loads to participate in frequency and voltage control	frequency, voltage and oscillation damping control systems, and adaptive RAS schemes, including renewables, energy	monitoring across all time scales and demonstrating full use of transmission capacity and rights-of-way		
	storage, and load as resources	Automated system restoration from outages		

Industry and Innovation Plan Beyond Year 10

Technology Transfer

Establish high-value testing and maintenance services; proof of concept demonstrations, continue annual conference and communications; and complete demonstration/commercialization of prototype software

Research and Development

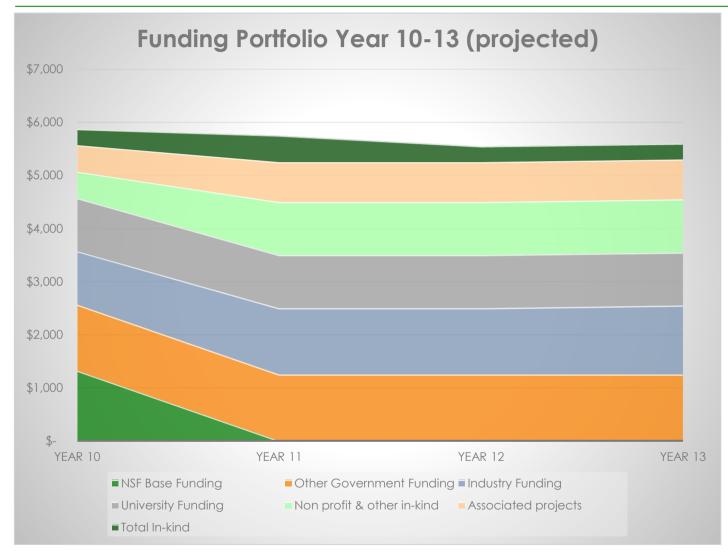
Continue to build on core competencies in power systems and power electronics, maintain long-term partnerships with organizations of various sizes to expand as needed with technology developments

Innovation

Be a leader in technology trends, publish high visibility white papers, leverage licenses and patents for long term funding

Sustainability of the Center

Kevin Tomsovic Center Director


Sustainability Plan Changing Research Portfolio

Research portfolio

- Responsive to industry members and other funding sources
- Maintain identity and build on research strengths
- Process
 - Expertise in power systems and power electronics.
 - Center-wide project on developing future research thrusts begun in Year 7
 - Continent-wide system with HVDC overlay
 - Fully inverter based microgrids
 - $_{\odot}\,$ Distribution system modeling as it impacts transmission system operations
 - $_{\odot}\,$ Increased emphasis on cybersecurity and other resilience issues
 - → Create foundation for projects beginning in Year 9 and 10 that extend beyond year 10
 - Balance new research directions without losing focus
 - $_{\odot}\,$ Operation of fully inverter based systems, such as, aircraft power
 - Power system interfaces to other infrastructures e.g., buildings, transportation

Post-Graduation Business Plan

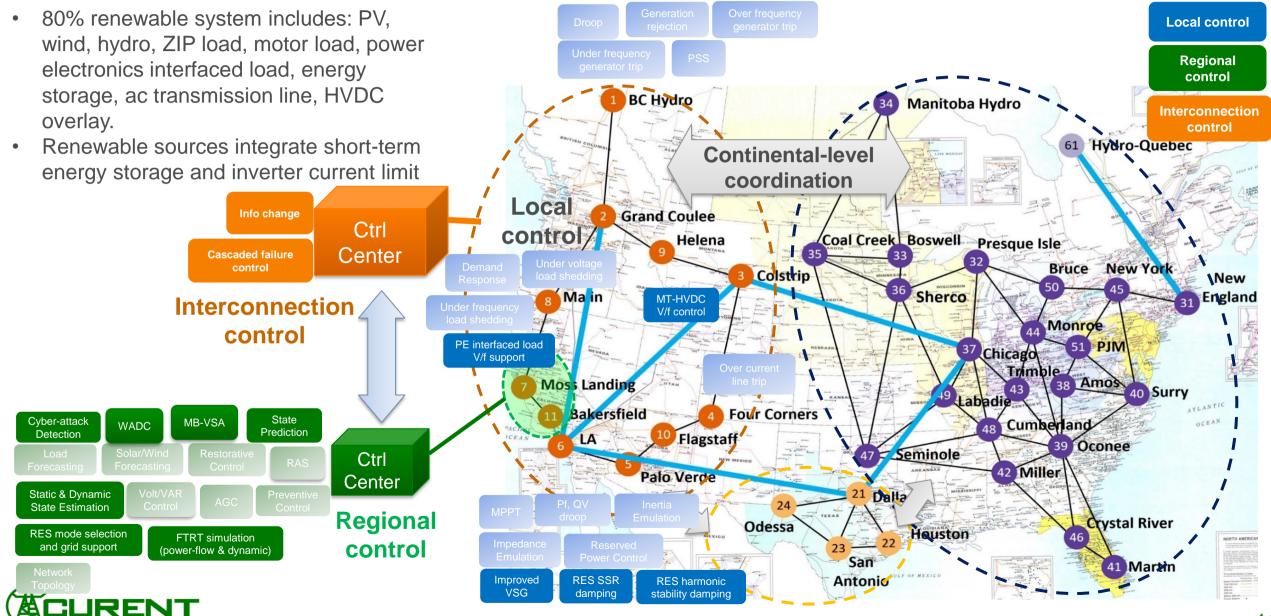
Funding Portfolio Including Years 10-13 Projection

Resources

- \$1M State/University
- \$1M Industry (memberships, service fees, licensing)
- \$3.25M Government grants and other associated projects
- \$500K F&A return and other university in-kind support; other foundations

CURENT System Demo Plan

Fred Wang, Fran Li


CURENT System Demo

- **Objectives:** Summarize and demonstrate CURENT accomplishments, i.e., wide-area monitoring and control of continental-scale power transmission grid with high-penetration of power electronics interfaced renewable energy sources and loads.
- **Approaches**: Implement key CURENT developed technologies in monitoring, modeling, control, and actuation in LTB and/or HTB in a coordinated and integrated way. Devise appropriate scenarios to demonstrate the effectiveness of the technologies for future grid. The scenarios will include: power flow control, v/f control, stability (small-signal, transient, resonance, harmonics), black start, cyber security. Different contingencies will be considered per NERC and other standards.

Implementation	System Functions/Scenarios
Local	V/f control, stability
Local, regional	Stability, voltage support
Regional	All
Local, regional, interconnection	Power flow control, v/f control, stability
	Local Local, regional Regional Local, regional,

HTB Demo Plan

LTB Demo Plan: Closed-Loop Cyber-Physical Interaction Demonstration

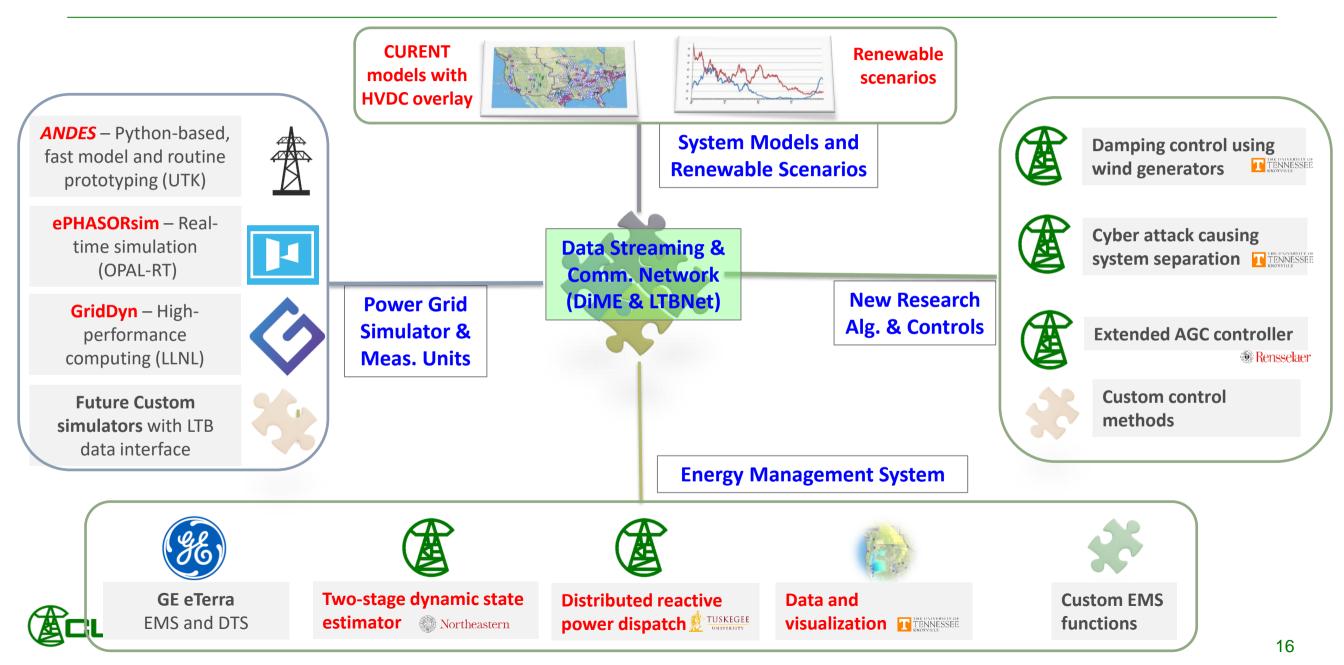
Demo Plan 1: Upgrade all LTB components for the new ANDES and DiME2

- Upgrade LTBPMU, LTBPDC, and LTB.
- Package the software for distribution (using Docker, for example)
- Write documentation and create test cases for power and communication co-simulation
- Prepare for software release

Demo Plan 2: Wide-Area Damping Controller study considering network latency

- Develop a wide-area damping controller that is robust for network latency
- Prototype the controller with the physical-system simulator
- Convert the controller into a module for LTB demonstration

Demo Plan 3: Market Prices Distortion and Manipulation by FDIA


- Establishing the LTB market module
- Establishing the data streaming interface with the LTB visualization
- Performing the FDIA and corresponding defense on the market module and demonstrating it on the visualization module

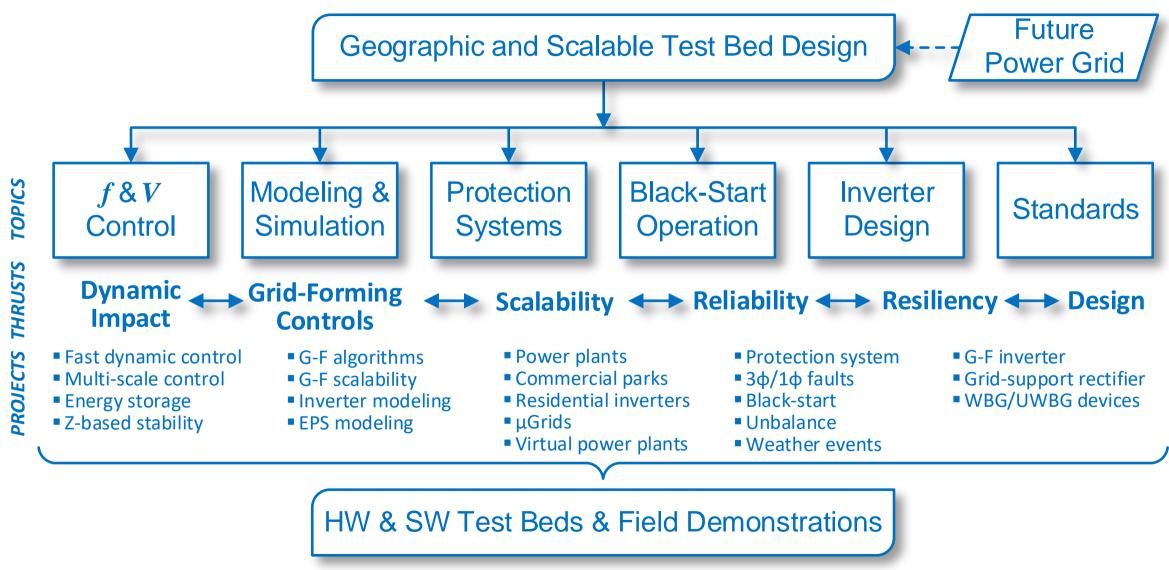
Demo 4: Synthesize demonstration scenarios

- Benchmark with NERC standard
- Integrate the damping controller into LTB
- Integrate a state estimator for the damping controller
- Improve the visualization based on demonstration needs

LTB Architecture Overview

Grid Forming Converters

Leon Tolbert



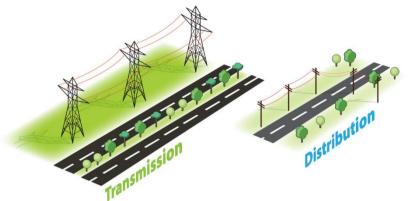
Grid Forming Converters

Future Research on Grid Forming Converters

Voltage Control	Frequency Control	Modeling/Simulation	Protection	Standards
 Coordinate voltage regulation schemes between inverters between inverters and with other devices Characterize input and output impedance of inverters to capture dynamic behavior Reactive power control and its impact on voltage stability Transmission vs. distribution-level voltage regulation 	 Reserve requirements for fast frequency control Requirement of virtual inertia Timescale partition of controls 	 Model validation and fidelity Represent large number of connected inverters without additional computation burden Electromagnetic transient simulation platforms for inverter-dominated systems Consider dynamics of primary energy sources Industry data/public network models Modeling interactions between inverters 	 Short-circuit response of inverters and its impact on control schemes Ability to produce negative and zero sequence currents Analytical/simulati on models to conduct fault studies Communication- aided protection Inverter ability to detect faults 	 Passive/active regulation bands Fault ride-through codes Power quality requirements Monitoring and information exchange Requirements for the interconnection of distributed energy resources (DER) with electric power systems (EPSs) Test procedures for verifying conformance Inverter limit
	~	between inverters and with other grid elements		 requirements Inverter protection standard 19

Blurring of Transmission and Distribution

Fran Li



Blurring of Transmission and Distribution

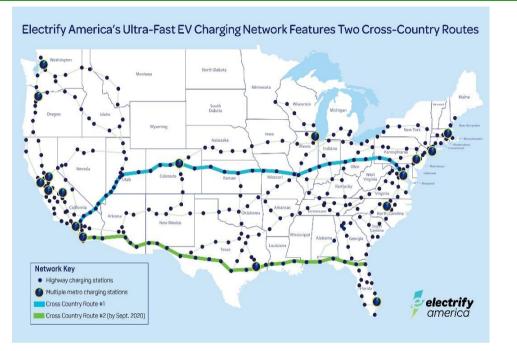
- **Objectives:** Adapt to partially dispatchable generations, accommodate bi-directional energy flow, and motivate dispatchable loads in future transmission and distribution systems through advanced control, and market design
- Approach: Aggregate and control distributed generation and load resources

Today's Transmission and Distribution (Image Credit: PJM)

- Research Agenda: Potential topics
 - Provide ancillary services (e.g., frequency regulation, congestion management) from behindthe-meter (BTM) distributed energy resources (DER).
 - Provide flexibility and improve grid resilience through the coordination of DERs (both generation and load); aggregate DERs to participate in electricity markets.
 - Community-based energy hubs that are reliable, sustainable and economical against climate changes and natural disasters.
 - Stability enhancement of bulk systems through the coordination of renewable energy systems equipped with controllable battery systems.
 - Co-simulation of transmission and distribution systems; co-simulation of stability programs and market programs.

Electrification of Transportation

Kevin Bai



EV Fast Charging Stations

Electrify America: a subsidiary of VW Group of America, established in 2016. It opened California's first 350 kW charge location in 2018, which is available in front of >120 Walmart stores. Electrify America offers stations so widely available that 96 % of Americans live within 120 miles of a charger. It will deploy over 3,500 chargers at 800 charging stations by December 2021.

IONITY: a high-power charging station network for EVs to facilitate long-distance travel across Europe, and a joint venture founded by BMW, Ford, Mercedes Benz, and Volkswagen Group with Audi and Porsche. In 2020 Hyundai entered IONITY as the 5th shareholder. It is privately funded but has been awarded €39.1 million in EU public funds (20% for building out the network).

	350 kV	/ initiative in	n Europe IC	DNITY	
General spec		Current ripple spe	C	Voltage ripple spe	C
Output voltage	200 – 920 V	Frequency	Current ripple limit *	Voltage ripple	±5 % or ±5 V
Output current	Up to 500A	< 10 Hz	1.5 A	Normal voltage slew rate	< ±20 V/ms
Current slew rate		< 5 kHz	6 A		
Normal Current ramp up rate	> 20 A/s	< 150 kHz	9 A		
Emergency shutdown current rate	>200 A/s	* Difference betwee top and negative p scale output	• •	Accord	ing to IEC 61851-23

Electrify America charging stations have 60Hz, 1.5MW, 13.2kV – 480Vac bulky transformer, supplying four 150 - 350kW DC outputs and one 50 kW DC output. Eliminating such bulky 60Hz MW transformers opens doors to HV SiC devices and new topologies.

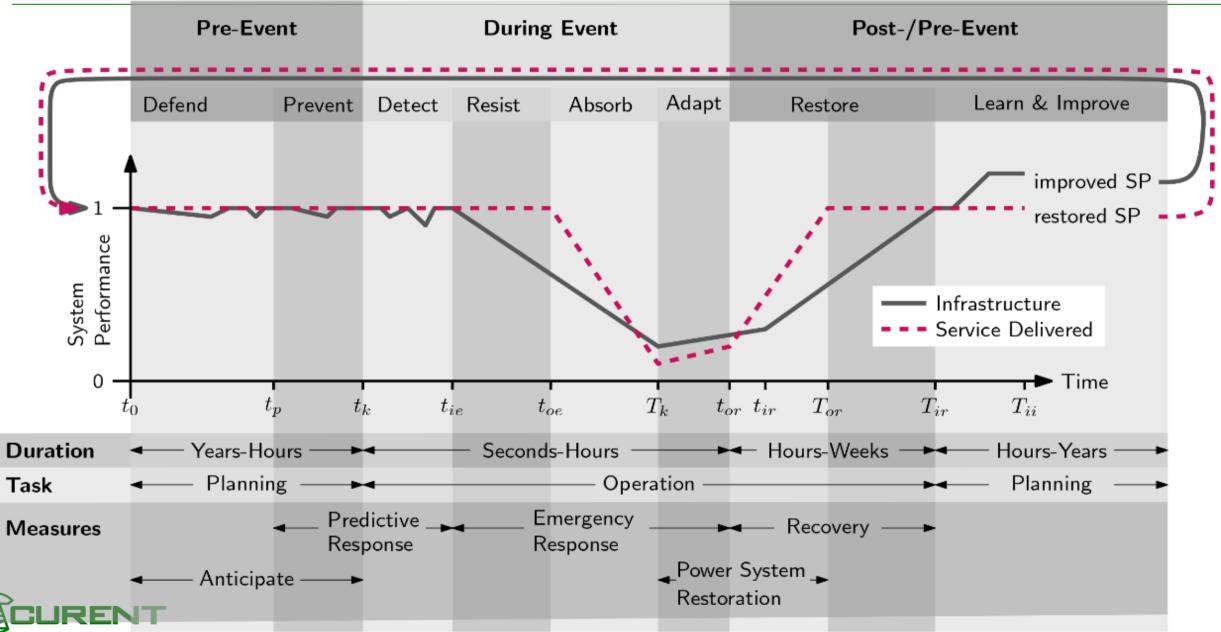
Summary

EV Fast Charging Stations provide excellent opportunities for HV SiC devices;

- □ EV drive inverters need the innovations not only on the semiconductors, but also from passive components (caps, filters, etc), microcontrollers and novel control algorithms;
- Study of the impact of EV fast chargers on the grid (dynamic response, disturbance, cyber securities, etc) is still lagging behind;
- □ Integration of the inverter, charger or DCDC is a popular trend;
- Other transportation electric power systems (e.g. electrified ships, aircraft, and trains) and associated power electronics, energy storage, control, and protection technologies.

CURENT Contribution to Resilience

Alex Stankovic Kevin Tomsovic



CURENT Work on Resilience

- **Objectives:** Summarize the CURENT accomplishments power system resilience is a concept of increasing importance for modern power systems. However, there is a disagreement in the literature and in the engineering community about its precise meaning and ways to quantify it.
- **Approaches**: CURENT spearheaded the effort to form a Task Force that would critically review the existing work and attempt to synthesize a definition and quantification methods that are relevant for existing and future systems with increased presence of renewables.
- This effort is sponsored by the Power System Stability Subcommittee of the IEEE PES Power System Dynamic Performance Committee, and Computing and Analytical Methods Subcommittee of the IEEE PES Analytic Methods for Power Systems (AMPS) Committee; Alex Stankovic and Kevin Tomsovic co-chair this Task Force
- TF Report and the companion paper are expected by the end of 2021.
- Working definition: Power system resilience is the ability to limit the spatial extent, system impact, and duration of system degradation following an extraordinary event. Key enablers for a resilient response include the capacity to anticipate, absorb, rapidly recover from, adapt to, and learn from such an event. Extraordinary events for the power system may be caused by natural threats, accidents, equipment failures, and deliberate physical or cyber-attacks.

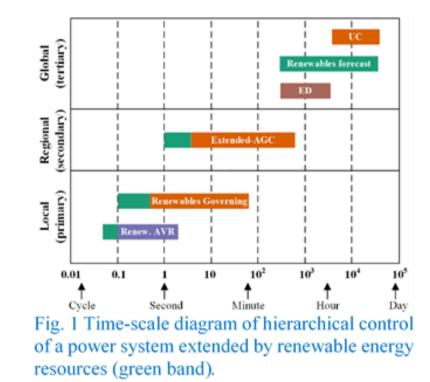
Temporal Aspects of Resilience

Where should CURENT focus on Resilience

- Hardening contingency tolerance
- Faster restoration after major events
- Graceful degradation
 - Microgrids and networks of microgrids
 - Controlled islanding
- Market incentives vs. regulations
 - Who should pay?
 - What incentives for building in resilience which may be very expensive and perhaps never used?

Protection and Control with Inverter-Based Resources

Joe Chow



Protection and Control with Inverter-Based Resources

- **Objectives:** Inverter-based resource operation in highrenewable-penetration systems requires fundamental rethinking on the protection (fast time-scale), control (slow time-scale), and dispatch (steady state) of AC power systems with fewer synchronous generators.
- **Approach**: Enabling of converters to provide advanced power system protection, stability, and dispatch functions
- **Research Agenda:** Potential topics
 - Coordinated converter protection schemes to provide backup fault clearing information
 - Stability (transient, damping, frequency) enhancement in power systems at the transmission and distribution levels, and in smart grid
 - With grid-forming converters, converter buses to control power flow with similar functions as a FACTS controller for various power system operation enhancements (ISOs/TOs can dispatch bus angels on certain converter buses, without specifying converter output power)

Industry Supported Research at CURENT **An Overview**

Yilu Liu

Acknowledgements

Southern Company

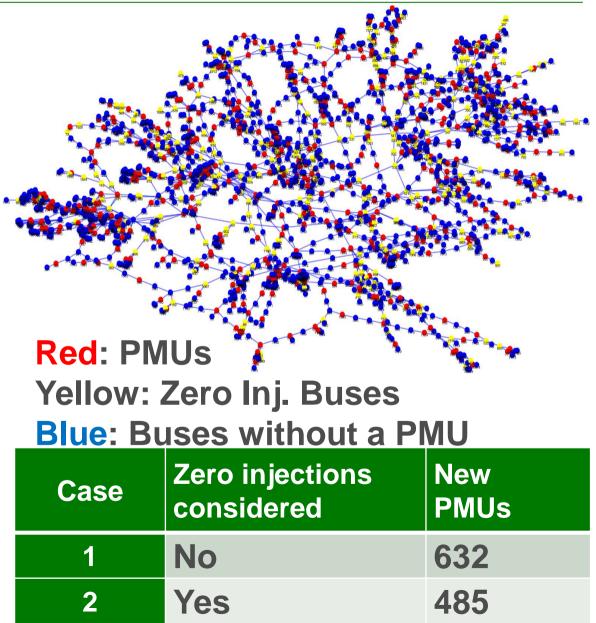
This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

Optimal PMU Placement (TVA)

Objective:

Determine optimal PMU locations to make TVA's Transmission System observable


Technical Approach & Benefits:

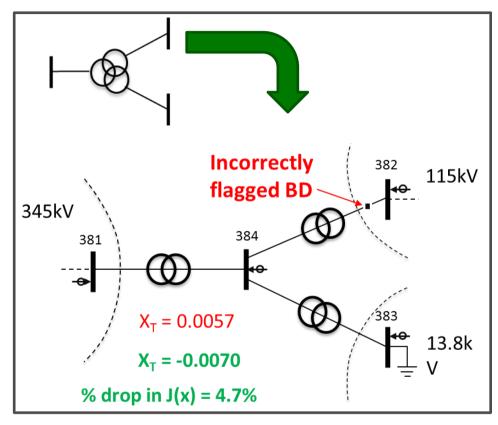
Mixed Integer programming; facilitating effective use of linear estimator to observe power grids.

Accomplishments:

Customized PMU placement method; allows placement for geographic area or voltage level.

new england Identification and Correction of Network Parameter Errors (ISO-New England)

Outcome/Accomplishment


ISO

 Existence of network parameter errors not only biases the State Estimation solution but may also lead to misidentification and incorrect removal of good measurements as bad data. In this task a practical and effective method is developed and implemented for an actual large scale power grid, making its operation resilient to errors in network model.

Impact and Benefits

- Accurate network parameters will yield accurate results for power market applications which use these parameters hence power markets will be more efficient;
- The nation's interconnected power grid will be operated more reliably and efficiently;
- Developed theory and unified framework will allow researchers to improve various network applications which strongly rely on accurate network models.

©2021 Ali Abur

Incorrect reactance of a 3-winding transformer detected and corrected by the developed software tool. Existing bad data processor incorrectly flagged a good measurement as the source of this error.

Non-Divergent State Estimator for Large Scale Power Grids (PJM Interconnection)

Task Goals:

Obtain estimated states for largest possible part of the overall system when the system-wide state estimator diverges.

Barriers:

- High computational burden associated with existing methods to overcome divergence
- Fast response time required during daily operation

Research Achievements:

- Developed a new approach to partition the system
- Developed an algorithm to avoid boundary observability issues
- Implemented the SE solution on a very large scale actual utility power grid
- Validated the method using actual save-cases.

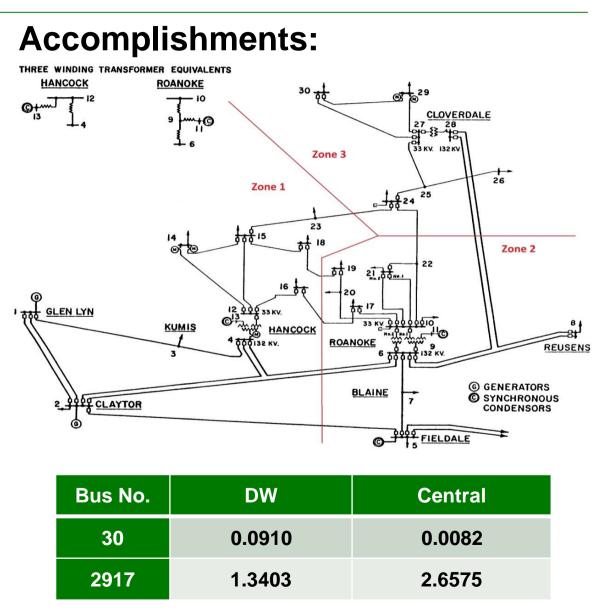
Test	Case		Spec	ify Bus			Measuremen	t Error	SE S	Solution	n Para	ameters
@ IEEE 118 bu	s system	Input type :	Bus Num	nber 🧕 Bus	s Name	Incident	to Bus : 4	3 Search	Tolerand	. T	1e-4	
PJM 2016 sr	immer system	Enter bus n	umber / name :	ADA	VIS Search	In zone 1	It is a load bu	IS				
PJM 2016 w	inter system	Select the b	us : BUS 4, Al	DAMS (Zone	1, PS) •	Injecti	on 🧕 Flow	Voltage	Iteration	limit :	30	
C PJM 2017 s	immer system	Info of incide	ent bus, genera	tor, load and sh	nunt :	Real	Reac			Cent	tral SE	1
Parse rawfile & measurements	A REPORT OF THE REPORT OF T					A	255 - 43 (Circu	514 T.)	Output t	ofile	output	t_ctrlSE.tx
System Sp	ecifications	Info of incide	ent branch, tran	sformer and ph	nase shifter :	Oha	nge measured	value	Run ct	trl SE	Di	verged!
Num. of Buses Num. of Branc Num. of Zones	hes 21606 51	BRANCH, AD BRANCH, AD Buses direc	AMS 230 KV / AMS 230 KV / AMS 230 KV / tly connected :	ADA-BRUF, 4-5 T1 , 4-5 (1)		-0.1 -0.1 Dele O Bacl		100	External by each	Two-L tiers us zone	10000	SE 1
Num. of Meas	67468		S (Zone 1, P NETTS (Zone 1			* Lindata	measuremen	Value	Output t	o file	outpu	t_2lvSE.txt
Num. of Gener	🔹 2844		NSWIC (Zone			+ Opdate	measuremen	changed!	Run 2L	VSE		e divergent cone 1
Ctrl SE		age of Buses	% in the Solve	RP SE	< 1%		SE Solution	2 (C. 1997)				
Ctrl SE					<1%	 Defau 	SE Solution I It selection of b ouses (delimite	uses	Recur Partition Output t	Bus Nu	ım.	15
			%	RP SE	<1%	 Defau 	It selection of b	uses r,)	Partition	Bus Nu	im. output	15
		Lv SE 2	%	RP SE		 Defau 	It selection of b ouses (delimite	uses r,)	Partition Output t	Bus Nu	im. output	15 _RPSE.tx Done!
10	0%	Lv SE 2	%	RP SE	100%	Defau Defau	It selection of b buses (delimite Display solu	uses r,) tions	Partition Output t Run R	Bus Nu o file	ım. output [Vm	15 _RPSE.tx Done!
10 Bus No.	0% 2	Lv SE 2 989 Zone	Actuel Vm	RP SE	100% CtrISE Vm	© Defau ⊘ Input t	It selection of b buses (delimite Display solu 2LvSE Vm	uses r,,) tions 2LvSE Va	Partition Output t Run R Obj value	Bus Nu o file	im. output [Vm 9	15 _RPSE.tx Done1
10 Bus No. 1 48	0% Bus Name BERGENFI	LV SE 2 989 Zone 1	% Actual Vm 1.03	RP SE Actual Vo -0.893	100% CtrISE Vm -999	© Defau ⊘ Input ł CtrlSE Va -999	It selection of b buses (delimite Display solu 2LvSE Vm -999	uses r ,) tions 2LrSE Va -999	Partition Output t Run R Obj value 9.26E+03	Bus Nut o file P SE RPSE -99	im. output [Vm 9 9	15 _RPSE.tx Done!
10 Bus No. 1 48 2 256	0% Bus Name BERGENFI TEANECK	2989 2000 1 1	% Actuel Vm 1.03 1.03	RP SE Actual Va -0.893 -1.07	100% CtrISE Vm -999 -999	Defau Our Defau O	It selection of b buses (delimite Display solu 2LvSE Vm -999 -999	uses r,) tions 2LxSE Va -999 -999	Partition Output t Run R 9.26E+03 9.26E+03	D Bus Nut o file P SE RPSE -999	im. output Vm 19 19 19	15 _RPSE.tx Done1
10 Bus No. 1 48 2 256 3 175	0% Bus Name BERGENFI TEANECK MIDDLESE	2983 2000 1 1 1 1 1	% Actuel Vm 1.03 1.03 1.02	RP SE Actual Ve -0.893 -1.07 -1.42	100% CtrISE Vm -999 -999 -999	Defau O Input t CtrlSE Va -999 -999 -999	It selection of b buses (delimite Display solu 2LvSE Vm -999 -999 -999	uses r,) tions 2LxSE Va -999 -999 -999	Partition Output t Run R 926E+03 926E+03 926E+03 926E+03	Bus Nui o file P SE P SE -999 -999 1.02	im. output Vm 9 9 9 2 1	15
10 Bus No. 1 48 2 256 3 175 4 75	0% Bus Name BERGENFI TEANECK MIDDLESE EDISON	2983 2000 1 1 1 1 1	% Actuel Vm 1.03 1.03 1.02 1.01	RP SE Actual Va -0.893 -1.07 -1.42 -3.21	100% CtrlSE Vm -999 -999 -999 -999 -999	 Defau Input I CtriSE Va -999 -999 -999 -999 -999 -999 	It selection of b buses (delimite Display solu 2LvSE Vm -999 -999 -999 -999	uses r,) tions 2LxSE Va -999 -999 -999 -999 -999	Partition Output t Run R 0bj value 926E+03 926E+03 926E+03 926E+03 926E+03 926E+03	Bus Nui o file P SE RPSE -999 1.00 1.00	Im. output Vm 19 19 19 19 19 10 10 10	15
100 Bus No. 1 48 2 256 3 175 4 75 5 49	0% Bus Name BERGENFI TEANECK MIDDLESE EDISON BRIDGEWA	Lv SE 2 983 Zone 1 1 1 1 1 1	% Actuel Vm 1.03 1.03 1.02 1.01 1.02	RP SE Actual Va -0.893 -1.07 -1.42 -3.21 -0.82	100% CtrlSE Vm -999 -999 -999 -999 -999 -999	Defau D	It selection of b buses (delimite Display solu 2LvSE Vm -999 -999 -999 -999 -999	uses r,) tions 2L/SE Va -999 -999 -999 -999 -999	Partition Output t Run R 0bj value 926E+03 926E+03 926E+03 926E+03 926E+03 926E+03 926E+03 926E+03	Bus Nut o file P SE P SE -999 1.00 1.00 1.00	Im. output 9 9 2 1 1 2 3	15
100 Bus No. 1 48 2 256 3 175 4 75 5 49 6 358	Bus Name BERGENFI TEANECK MIDDLESE EDISON BRIDGEWA LINVFT	Lv SE 2 989 Zone 1 1 1 1 1 1 1	% Actuel Vm 1.03 1.03 1.02 1.01 1.02 1.03	RP SE Actual Ve -0.893 -1.07 -1.42 -3.21 -0.82 2.57	100% CtrlSE Vm -999 -999 -999 -999 -999 -999 -999 -9	© Defau © Input H CtrlSE Ve -999 -999 -999 -999 -999 -999 -999	Lt selection of b buses (delimite Display solu 2LvSE Vm -999 -999 -999 -999 -999 -999 -999	tions 2LrSE Va -999 -999 -999 -999 -999 -999 -999	Partition Output t Run R 0bj value 926E+03	Bus Nur o file P SE -999 1.00 1.00 1.00 1.00	Im. output Vm 19 19 12 11 12 13	15 Conel RPSE V/ -999 -999 -1.42 -3.21 -0.82 2.57
100 Bus No. 1 48 2 256 3 175 4 75 5 49 6 358 7 275	Bus Name BERGENFI TEANECK MIDDLESE EDISON BRIDGEWA LINVFT BUSTLETO	2 989 20ne 1 1 1 1 1 1 1 1 1 1	% Actuel Vm 1.03 1.03 1.02 1.01 1.02 1.03 1 03 1	RP SE Actual Ve -0.893 -1.07 -1.42 -3.21 -0.82 2.57 -3.53 30.7 86.2	100% CtrISE Vm -999 -999 -999 -999 -999 -999 -999 -9	Defau D	tt selection of b buses (delimite Display solu 2LvSE Vm -999 -999 -999 -999 -999 -999 -999 -9	uses r,) 2L/SE Va -999 -999 -999 -999 -999 -999 -999 -9	Partition Output t Run R 926E+03	Bus Nui o file P SE -999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	m. output vm 9 9 9 9 12 14 12 13 14 12 13	PSE.txt Done! RPSE Va -999 -999 -1.42 -3.21 -0.82 2.57 -3.53
100 Bus No. 1 48 2 256 3 175 4 75 5 49 6 358 7 275 8 9662	Bus Name BERGENFI TEANECK MIDDLESE EDISON BRIDGEWA LINVFT BUSTLETO 02CPF_NH	2008 989 2000 1 1 1 1 1 1 1 1 1 23	% Actuel Vm 1.03 1.03 1.02 1.01 1.02 1.03 1 1.03 1 1.01	RP SE Actual Va -0.893 -1.07 -1.42 -3.21 -0.82 2.57 -3.53 30.7	100% CtrISE Vm -999 -999 -999 -999 -999 -999 -999 -9	 Defau Input I Input I 999 	tt selection of b buses (delimite Display solu 2LvSE Vm -999 -999 -999 -999 -999 -999 -999 -9	uses r,) 2L/SE Va -999 -999 -999 -999 -999 -999 -999 -9	Partition Output t Run R 926E+03 926E+03	Bus Nui o file P SE -999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	m. output vm 9 9 9 9 12 14 12 13 14 12 13	15 TRPSE.txt Cone! RPSE Vc -999 -999 -999 -142 -3.21 -0.82 2.57 -3.53 30.7

GUI for the non-divergent SE installed at PJM

Multi-Area Robust and Scalable Linear State Estimation

Objective:

Develop a multi-area robust state estimator


Technical Approach & Benefits:

Robustness properties of LAV estimator are combined with the wellknown DW decomposition principle

Accomplishments:

Prototype linear state estimator which can handle large size multi-area systems and is robust against errors.

©2021 Ali Abur

CPU Time in Seconds

Fault Detection and Location Using Power Line Communication Devices

Project Goals:

Barriers

ullet

ullet

- To develop a new approach to accurately and efficiently detect faults using power line communication (PLC) devices with corresponding detection metrics;
- To derive exact fault location by measuring responses to injected impulse along with monitored lines.

Respective investments with high costs in traditional grid;

Utilizing PLC's narrowband and broadband solutions with

techno-economic advantages while further investments

Developing an analytical model describing complex

Unclear transfer function with numerous branch and

impedance mismatching on power lines.

transfer functions of typical line networks.

Methodologies to Overcome Barriers

Fault Occurrence Voltage and current<math>Voltage ved or at <math>(-f) = f(-f) = f(

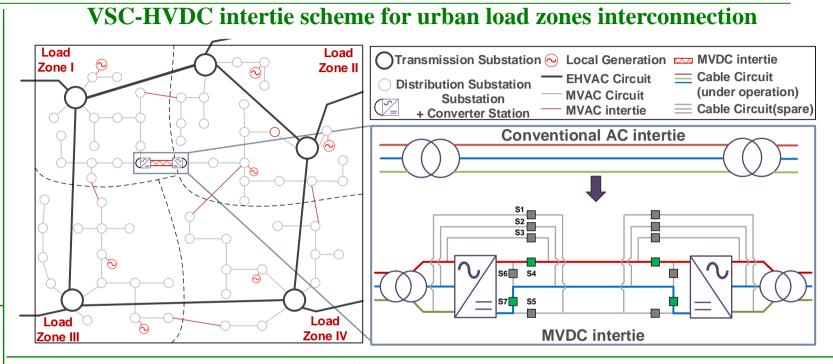
Research Achievements:

- Installed PLC devices along power lines with on-site measurements and data communication;
- Derived analytical transfer function of typical power lines under fault condition through a multipath model;
- Designed fault detection metrics, including deviations to the values of input impedance matrix elements due to fault occurrence;
- Designed fault location metrics, including responses between normal conditions and during fault occurrence.

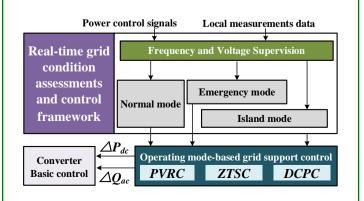
are not required;

ABB VSC-HVDC Interties for Urban Power Grid Enhancement

Project Goals:


- Develop an urban power grid upgrading scheme using VSC-HVDC intertie for addressing the challenges of urban power grid expansions.
- Realize the conversion from existing AC cable circuit to DC operation.
- improve the flexibility and resilience of the urban power grid with advanced control strategy

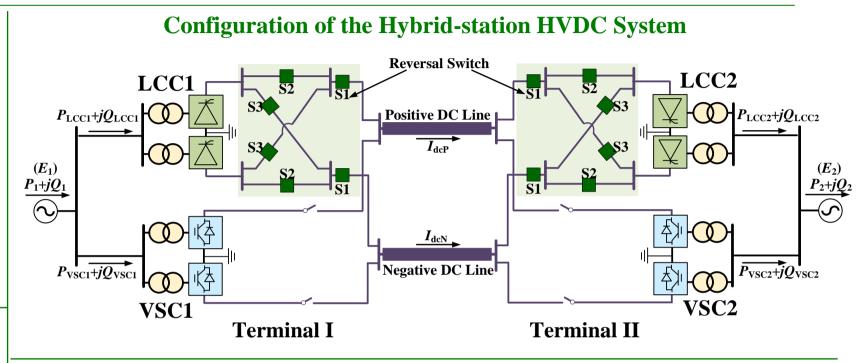
Barriers


- Relatively low cost construction
- Different operation conditions and corresponding control requirements

Methodologies to Overcome Barriers

- Novel VSC-HVDC intertie scheme
- Flexible operating modes
- Adaptive emergency control strategy

Adaptive emergency control strategy

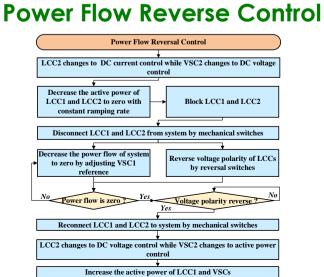

Research Achievements:

- Develop a Novel VSC-HVDC intertie scheme for urban power grid enhancement and modernization
- Propose operating modes corresponding to various urban power gird operating conditions.
- Develop an adaptive emergency control strategy urban for VSC-HVDC intertie.

Hybrid HVDC system for Cross-seam Interconnections

Project Goals:

- Develop a relatively cost HVDC transmission system scheme for crossseam interconnections
- Realize the uninterrupted power flow reversal of hybrid HVDC transmission system
- Realize both AC/DC fault ride-through for hybrid HVDC transmission system



Barriers

- Relatively low cost construction
- Uninterrupted power flow reversal
- AC/DC fault ride-through

Methodologies to Overcome Barriers

- Hybrid HVDC scheme
- Power flow reversal control
- AC/DC fault ride-through control

Research Achievements:

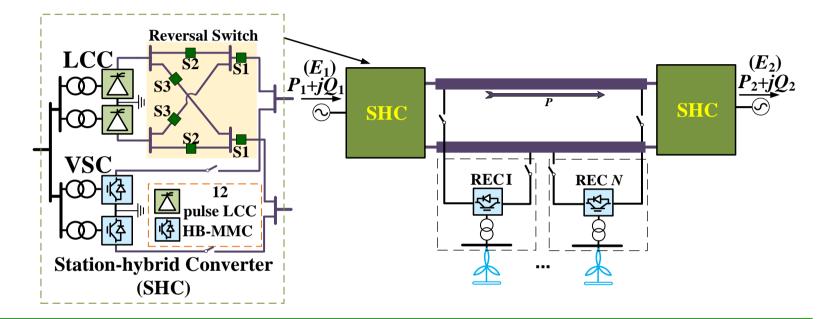
- Develop a hybrid HVDC transmission system scheme for cross-seam interconnections
- Develop a power flow reversal for hybrid HVDC transmission system
- Develop a AC/DC fault ride-through control for hybrid HVDC transmission system

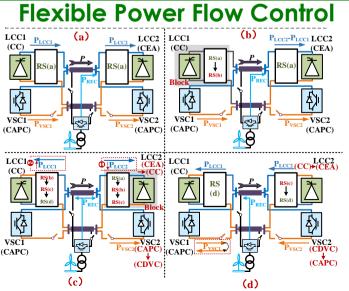
Cross-seam Hybrid MTDC System for Integration and Delivery of Large-scale Renewable Energy

Project Goals:

- Develop a novel topology of the hybrid MTDC system for cross-seam bulkpower transmission and integration of large-scale renewable energies
- Realize the flexible power flow control of hybrid MTDC system
- Realize frequency response control for hybrid MTDC system

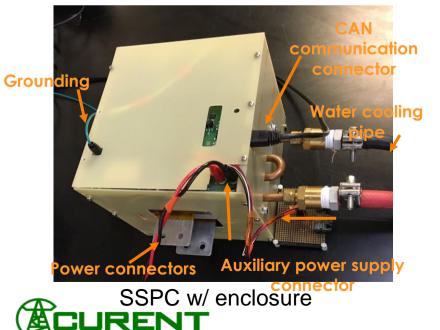
Barriers


- basic operation control of hybrid MTDC system
- Renewable energies connecting
- Power flow control strategy


Methodologies to Overcome Barriers

- Hybrid MTDC scheme
- Different renewable energies connecting method
- Flexible power flow control

The topology of the proposed hybrid MTDC system

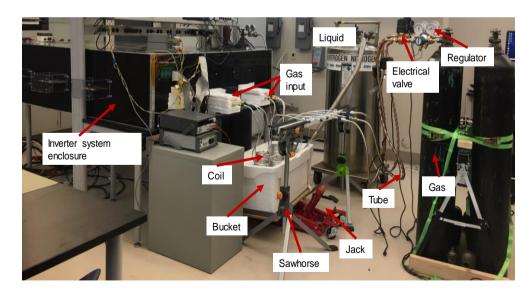


Research Achievements:

- Develop a hybrid MTDC system scheme for cross-seam bulk-power transmission and integration of large-scale renewable energies
- Develop a flexible power flow control for hybrid MTDC system
- Explored the frequency response control strategies of the proposed hybrid MTDC system for improving the frequency stability of the interconnected power systems

Power Electronics Projects

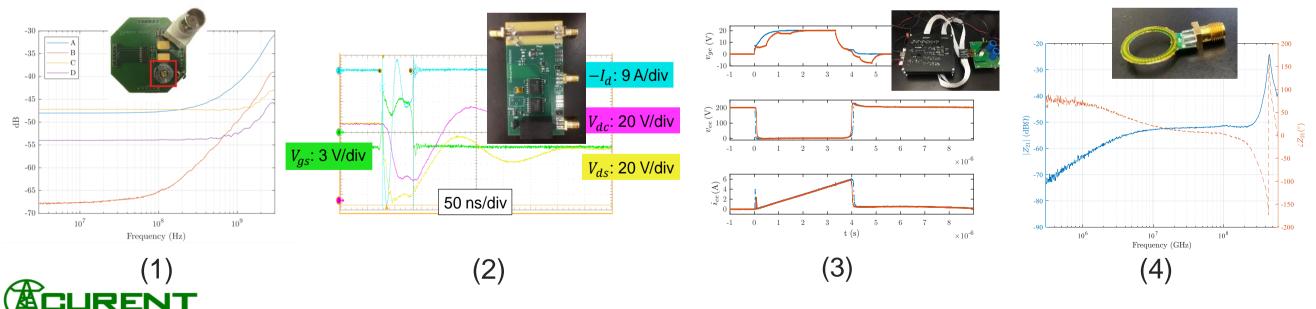
- Solid-state Power Conditioner (SSPC)
 - DC SSPC with 1kV/500A rating
 - 99.48% efficiency and 112.36 kW/kg specific power achieved
 - short circuit protection, i²t (overload) protection, soft start, grounding fault indication, and remote control



- GaN universal charger
 - 1.5 kW GaN-based universal battery charger (115V & 230V AC input, 28V & 270V DC output)
 - >96% efficiency and >3 kW/lb power density
 - Meet aircraft PQ and EMI requirement

GaN charger w/ enclosure

- Boeing/NASA MW cryogenicallycooled inverter project
 - 1 MW inverter with cryogenic cooling for aircraft propulsion
 - 99% efficiency and 18 kVA/kg specific power achieved
 - Meet aircraft PQ and EMI requirement



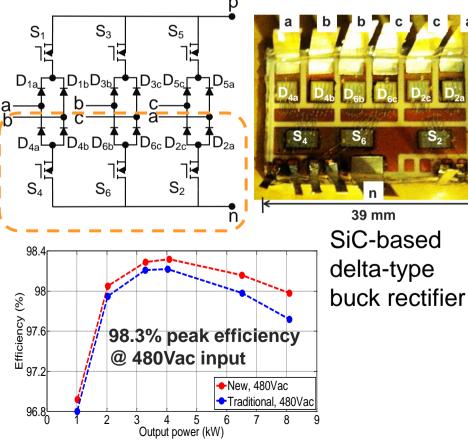
MW inverter with cryogenic cooling

Keysight Projects

- 1. High-bandwidth low-inductance shunt for WBG switching device characterization
 - Over 2 GHz bandwidth in 0.11 nH package for *best* fidelity and lowest interference
- 2. Ultra-fast overcurrent protection scheme for WBG switching devices
 - *Fastest* 7.55 ns detection time ensures safety and easy protection
- 3. Programmable universal gate driver for easy device driving and speed tuning
 - Drive almost all switching devices with easily tunable configuration
- 4. Combinational Rogowski coil for WBG switching current continuous measurement
 - Highest 300 MHz bandwidth to continuously monitor WBG device switching behavior

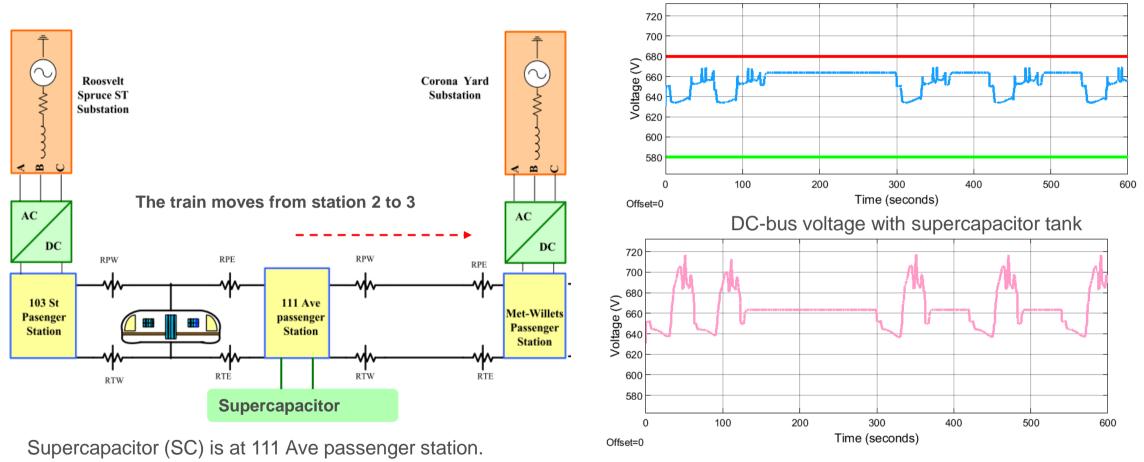
ABB

ABB Projects


- □ Solar PV inverter project
 - 4.5kW all-GaN single-phase solar inverter
 - DC-DC boost converter and DC-AC inverter included
 - CEC efficiency: 96.5% (w/ DC-DC), 97.8 % (w/o DC-DC)
 - Meet < 3% THD and EMI requirement at ac side
 - Lower cost than Si solution

GaN-based PV inverter

- New delta-type current source buck rectifier topology
 - Improved efficiency compared to traditional topology
- An 8kW all-SiC prototype implemented


- GaB Based solid-state circuit breaker (SSCB)
 - 400V/8A dc SSCB using GaN Gate-Insulated Transistors
 - 99.6% efficiency, 10.6W/cm³ power density and 400ns response time achieved
 - Overload protection and short circuit protection included

26

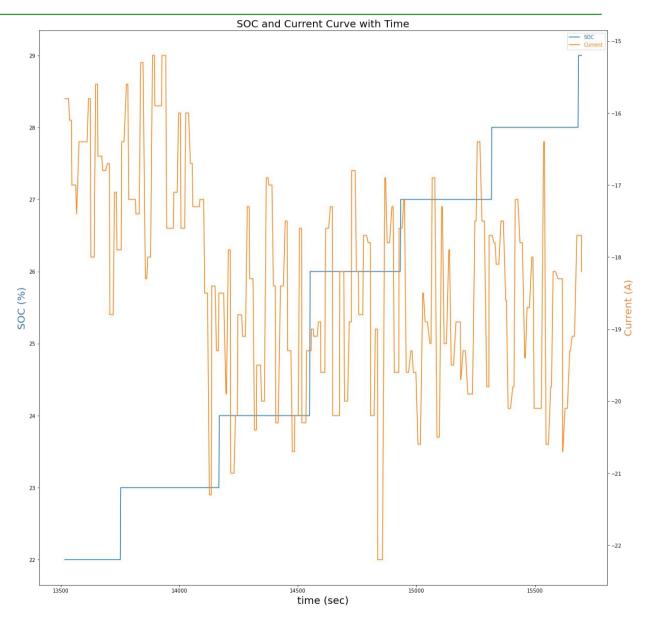
GaN-based DC SSCB with overload protection

ConEdison NY Subway System with ESS

DC-bus voltage without supercapacitor tank

UTK team based on the New York Subway Station schedule designed the supercapacitor (SC) tank. The SC tank absorbs the regenerative energy and provides extra power for train acceleration thereby stabilizing the DC bus. The research offers ConEd the option to eliminate the chopper thereby saving the energy. UTK also surveyed various SC technology.

7 FI

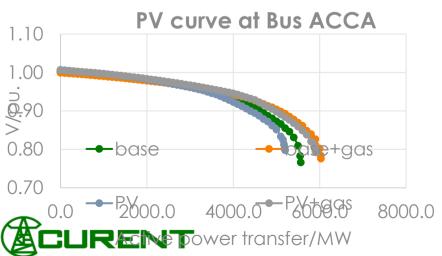

ConEdison Battery SOH Calculation

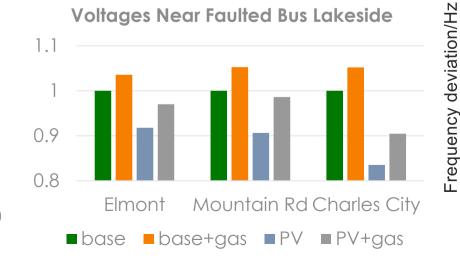
UTK worked with ConEd to:

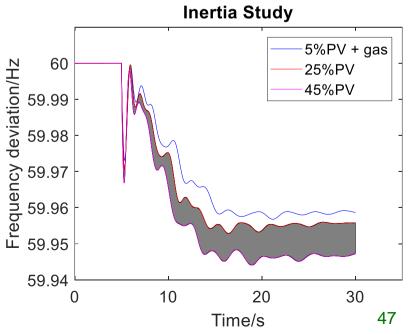
- 1) Extract the battery voltage and current data;
- 2) Estimate the SOC based on the Coulomb Counting method;

 $SOC(t) = SOC(t-1) + \frac{\int I(t)dt}{Q} \times 100\%$

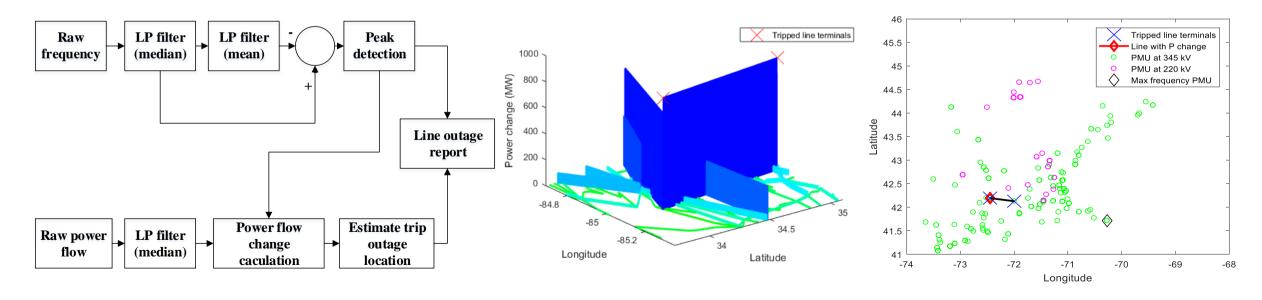
- 3) Estimate the battery state of health (SOH); $SOH = \frac{Q}{Q_{rated}} \times 100\%$
- 4) Use machine learning to estimate the battery behavior in the long run.





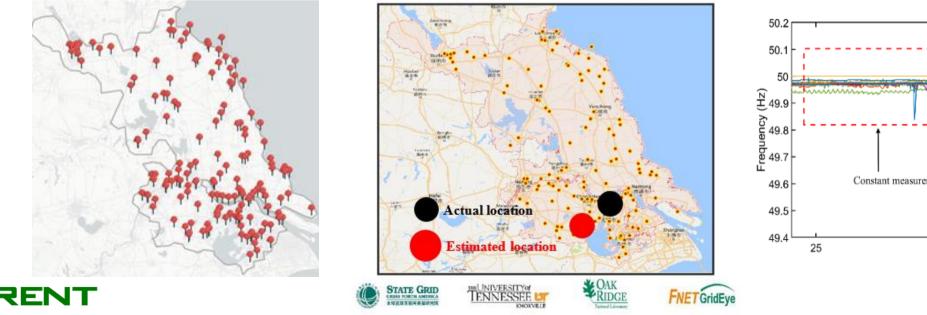

Dominion Energy PV vs Gas Study

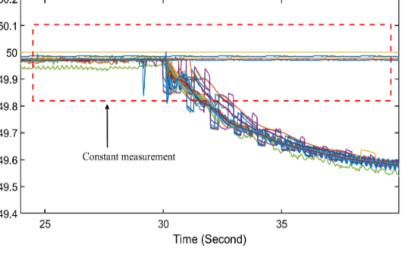
- Performed studies on the impact of gas and solar generation on Dominion Energy area
- Study Scenarios (Base case, high PV case, w/ and w/o proposed gas plant)
- Short Circuit Study
 - Solar generation provides less short circuit MVA than conventional generation.
- Voltage Study
 - Gas generation provides more local voltage support during fault conditions
 - Gas generation increases active power transfer limit
- Inertia Study
 - Gas generation contributes more to system inertia than same amount of solar generation



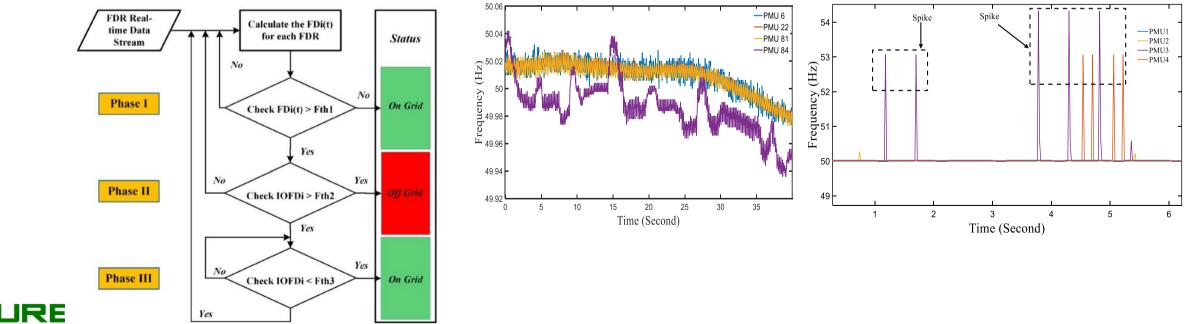
Short Circuit MVA

GEIRINORTH AMERICA Real-time Line Outage Detection and Localization


- Line outage detection and localization
 - Line outage detection : Implemented and tested with simulation cases
 - Root cause analysis of line trip localization error by using NEISO and TVA systems
 - Line outage localization: A method using power flow to improve accuracy of the previous method
- Demo of the proposed method
 - Tested the proposed method with 95 line outage cases in NEISO system



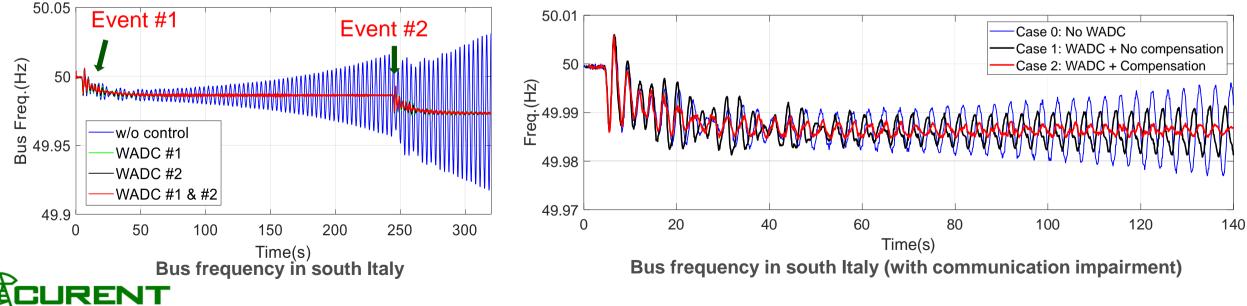
GEIRINA Real-time Events Detection and Triangulation


- Implemented and operates in a power grid with 400 PMUs
 - Detected event types: Generation trip and load shedding
 - High resolution real-time measurement in huge volume
 - Data quality issues in real time measurements
- Tested accuracy and robust of the application for operational purpose
 - Tested with 10 simulation event cases and 1 real-world event case
 - Tested with 75 ambient cases

GEIRI NORTH AMERICA Real-time Islanding Detection and Localization

- Islanding detection using measurements with data quality issue
 - Implemented a real time islanding event detection and localization application for GEIRINA
 - Test and validate with high density PMU measurements and simulation events
 - Evaluate impacts of PMU data quality issue to the application
- Progress of the project
 - Testing data provided from GEIRINA was delayed due to COV19 virus
 - GEIRINA was closed and moved to China

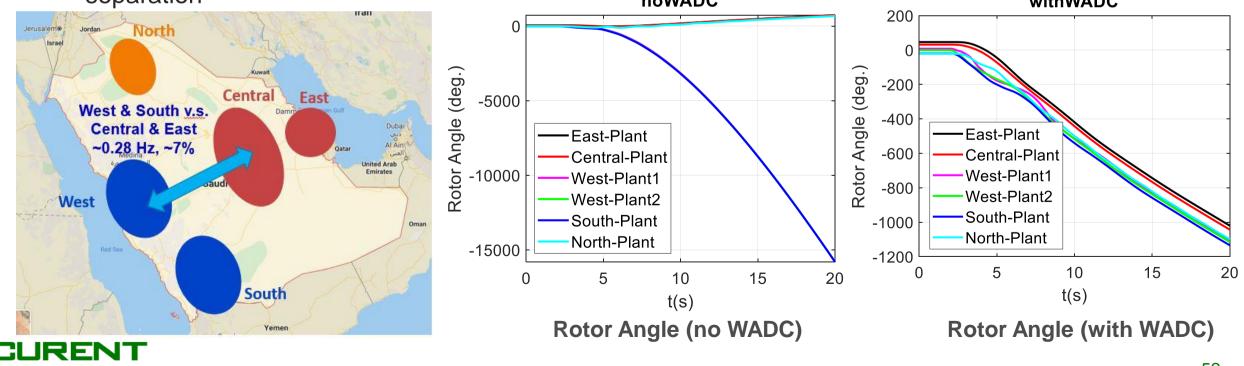
Adaptive Oscillation Damping Control: Terna


- 2k+ bus model with 2017 event replicated in simulation
 - Target mode: South Italy v.s. France/Germany
 - Input signal: South-North frequency difference or local frequency in south
 - Actuators: Two synchronous condensers in South Italy
- 150-950 ms random delay + 60% data loss (25Hz reporting rate)

• Case 0: No WADC

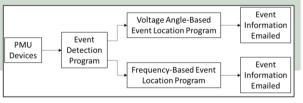
ELECTRIC POWER

RESEARCH INSTITUTE


- <u>Case 1:</u> WADC + No compensation & Missing data handling
- Case 2: WADC + Compensation & Missing data handling

EPCI ELECTRIC POWER RESEARCH INSTITUTE Adaptive Oscillation Damping Control: SEC Case

- 2k+ bus full model with 2017 system separation event replicated
 - Target mode: west/south v.s. central/east
 - Observation signal: Bus frequency between west and central
 - Actuators: Generator governors, exciters, and SVCs
- Improve damping ratio and transient stability simultaneously
 - Three incidents since 2015 that resulted in tripping tie-line between west and central system separation
 noWADC
 withWADC


Implementing Event Detection Tools Based on PMUs

Introduction

The frequency monitoring network (FNET) generation and load tripping event detection algorithm was deployed at Southern Company. It was altered to use Southern Company's phasor measurement unit (PMU) data as an input rather than the FNET Frequency Disturbance Recorder (FDR).

Overview of Tool

- PMU data used as input
- Event detection program is coded as action adapter in openPDC
- Two different location methods tested

Flowchart for Event Location Tool

Event Example

- Tool is used to detect and locate generation trip or load shedding events
- Generation trip decreases
 frequency
- Load shedding increases frequency
- Calculates the rate of change of frequency (RoCoF) to detect event

Generation Trip Event Detected by FNET

Graphical User Interface (GUI)

- User starts tool from GUI
- Easy to operate
- Changeable parameters
- Can alter sensitivity to events
- Can set who receives results

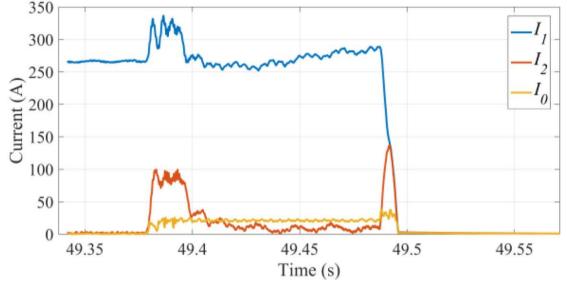
GUI for Event Location Tool

Output

- Creates event record in text file
- Creates html file of location in Google Maps
- Files packaged in email
- Email sent to those specified in GUI

EventLocationRecord.txt - Notepad		-		Х
File Edit Format View Help				
Event time: 2018-10-22 02:57:06				^
Generation trip event happened at (35.9622	-83.9233) for amount abou	rt 1100	MW	

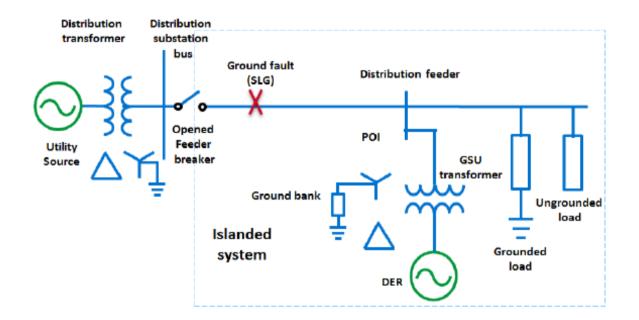
Event Results Text File



Event Results Map

Distributed solar generation fault current study

- Proposed a method and implemented it in MATLAB and VB script to batch process thousands of in-field recording files. Sorting out all the events that the fault current is fed by distributed solar generation
- Validated the fault characteristic of utility scale distributed solar generation
- The findings help the group in modeling distributed generation for fault analysis



Sequence components of an event

Dominion DG voltage study during un-intentional islanding

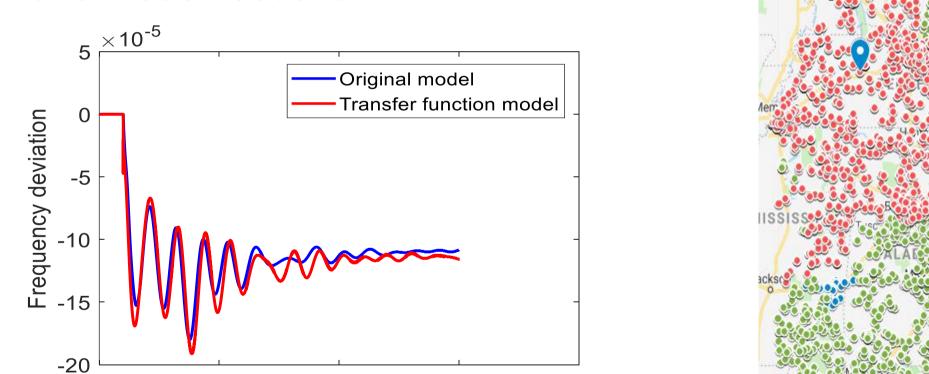
- Analyzed the modeling of DG using sequence components, validated voltage profile of both conventional synchronized DG and inverterbased DG during un-intentional islanding
- Proposed an overvoltage elimination method by changing the sizing of NGR, the proposed method has been verified using Aspen Oneliner and RTDS model
- Help the group understand the voltage profile during un-intentional islanding of inverterbased DG

Islanded system of distribution feeder and DER with a ground fault

Automation on relay setting generation

- Designed interface for protection values and schemes input in relay setting documentation spreadsheet, implemented VBA macros to validate setting values and generate setting files
- Instead of manual input by the engineer, the generated files can be imported by relay setting software directly, saving the processing time and reducing the miscalculations and errors in the work process

Relay Type	Task status					
SEL 451 feeder relay	Finished					
SEL 351 feeder relay	On going					
SEL 351 Transformer Overcurrent relay	Finished					
SEL 351 Transformer Differential relay	On going					


File Hom	e insert	Page Layout Formulas Data Review	View	Developer H	ielp PI Data	aLink							🖻 Share	Comm	ents
Ph X	Arial	• 10 • A^ A = = = ≫ • ∰	Wrap Text							Σ	AutoSum •	AN O	14		
Paste 🗈 🗸						Conditional	E avreat as		Insert Delete Fo		Fill ~	Sort & Find &	Ideas	Sensitivity	
v ổ	B <i>I</i> <u>∪</u> ∽	⊞~ �~▲~ ㅋㅋㅋ ㅋㅋ ▣	Merge & Cen	ter ~ \$ • %	69 .00	Formatting ~			insert Delete Fo	v 🕹	Clear ~	Filter ~ Select ~	Ideas	Sensitivity	
Clipboard		Font S Alignment		⊡ Nt	umber 5		Styles		Cells		Ed	litina	Ideas	Sensitivity	_
	[\$1]	Trip Logic					Styles		CCIID		20	ining	Tucus	Sensitivity	
				51S1T OR 51S2	T OR PSV04 O	R 67P1T OR 6	7G1T OR								
	TR	TR Trip (SELLogic)		PCT10Q OR IN1				The Trip	equation is the l	ogical OR o	of 51S1T, 51	IS2T, PSV04, 67F	P1T, 67G1T	, PCT10Q, P	SV0
				NOT 51S1T AND											
				NOT PCT10Q AN NOT 52AA1 AND											
	ULTR	ULTR Unlatch Trip (SELogic)		PB12PUL		NUNUTFSVI	4 0 K	The Lini	atch Trin equation	n is the lociu	cal AND of	all the inverse (NO	T) of all va	iables used i	in the
	[L1]	Protection Logic		[L1]				The One	aten mp equation	r is the logi		an the inverse (ive	/i j ui ali va	lables useu l	
	PROTSEL1	PSV01 #Cross Interlock		(-)				This pro	tection variable is	s set for Cro	ss Interlock	k from another circ	uit If IN10	is high (a fa	ult s
	PROTSEL2	PSV04 #Low Set INST Trip		PSV04 := 67P4	AND PLT04							taneous trip. If th			
				PSV05 := 51S1T	OR 5152T OR	R PSV04 OR 67	7P1T OR								1
	PROTSEL3	PSV05 # Breaker Failure Initiate		67G1T OR PCT1	0Q OR PSV14							e Initiate (BFI) wh			
	PROTSEL4	PSV10 # SCADA Control Enabled		PSV10 := PLT10								e logic bit to deter			
	PROTSEL5	PSV11 # Reclosing OFF		PSV11 := NOT F								Reclosing Off stat			
	PROTSEL6	PSV14 #Internal Breaker Fault		PSV14 := 51S1 /		3 AND 50P2						nternal breaker fau			
	PROTSEL8 PROTSEL9	PCT02PU PCT02DO		PCT02PU := 108 PCT02DO := 0.0				This pro	tection condition	ing timer is	set when th	ne bus potential is	required to	r relay operat	.ion.
	PROTSEL10	PCT02D0 PCT02IN #LOP Timer		PCT02D0 := 0.0					ф						
	PROTSEL11	PCT03PU		PCT03PU := 60.0				This pro		ing timer is	set for trip o	coil monitor alarm	in case the	trin coil is u	nable
	PROTSEL12	PCT03DO		PCT03DO := 60.				into pro		ing timer to	oot ior tilp t		in outoo ini	ing conto a	
				PCT03IN := (IN1		N104) OR (NOT	F IN103								
	PROTSEL13	PCT03IN # Trip Coil Monitor		AND IN104)											
	PROTSEL14	PCT04PU		PCT04PU := 0.0				This pro	tection conditioni	ing timer is	set for Low	Set Inst Trip Alar	m timer. It i	s used to hol	id Ol
	PROTSEL15	PCT04DO		PCT04DO := 360											
	PROTSEL16	PCT04IN #Low SET INST Trip Alarm		PCT04IN := PSV											
	PROTSEL17 PROTSEL18	PCT06PU PCT06DO		PCT06PU := 360				This pro	tection conditioni	ing timer is	set for a Fre	equency Lockout	Limer. If an	external trip	(IN1
	PROTSEL18 PROTSEL19	PCT06D0 PCT06IN # Frequency Trip LO Timer		PCT06DO := 120 PCT06IN := IN10											
	PROTSEL20	PCT07PU		PCT07PU := 1.0				This pro	tection conditioni	ing timer is	set as nart	of the Fault Induc	ed Conduct	or Motion loc	nic II
	PROTSEL21	PCT07DO		PCT07DO := 5.0				into pro		ing timer to	oor ao part	or the Faat made			,
				PCT07IN := (NO	T 51 S4 AND 51	IS5 AND 51 S6) OR (51 S4								
				AND NOT 51S5	AND 51 S6) OR	(51S4 AND 51	S5 AND								
	PROTSEL22	PCT07IN #FICM Initiate for Phase to Phase Fault		NOT 51S6)											
	PROTSEL23	PCT08PU		PCT08PU := 0.0				This pro	tection conditioni	ing timer is	set as part	of the Fault Induc	ed Conduct	or Motion log	jic. Il
	PROTSEL24	PCT08DO		PCT08DO := 300											
	PROTSEL25	PCT08IN #FICM Logic for Cleared Downline Fault		PCT08IN := NOT PCT07Q	(5154 OR 515	55 OR 5156) A	NU								
	PROTSEL25	PCT09PU		PCT09PU := 2.0	00000			This pro	tection conditioni	ing timer ie	eat as part	of the Fault Induc	ed Conduct	or Motion loc	nic H
	PROTSEL20	PCT09DO		PCT09PO := 2.0				This pro	Lection Condition	ing unier is	set as part	or the raut muuc	eu conduci		jic. ii
	PROTSEL28	PCT09IN #FICM Alarm		PCT09IN := PCT		1T OR 67P1T)									
	PROTSEL29	PCT10PU		PCT10PU := 5.000000		This protection conditioning timer is set as Inst Trip After First Reclose equation is set to trip I									
	PROTSEL30	PCT10DO		PCT10DO := 0.000000				•							
	PROTSEL31	PCT10IN #INST After First Reclose		PCT10IN := NOT	SPSHOTO AN	D (50P3 OR 50	0G3)								
	PROTSEL32	PCT12PU						This pro	tection conditioni	ing timer is	set as the [Distribution Reclo	ser Reverse	Interlock to	allow
	PROTSEL33	PCT12DO													
	PROTSEL34 PROTSEL35	PCT12IN #Distribution Recloser Reverse Interlock PCT13PU						This str	testion condition	ing times in	ant on the f	Orean Interlect: D:	eneut Dola	ctimer Hood	
	PROTSEL35 PROTSEL36	PCT13P0 PCT13D0						inis pro	rection condition	ing timer is	set as the (Cross Interlock Dr	opout Dela	y umer. Usec	1 LO E
	PROTSEL36 PROTSEL37	PCT13IN #Cross Interlock													
4			TDR Reclose	er PHA R\$\$ DG OI		loser GND R\$\$	TOPP	ecloser G	ND R\$\$ DG ON	Ouick C	heck D	DB Settings	Vhit (+) : (
	IDK Kedlose	TOR RECOSET PHA R\$3	TER REGOSE	1 FINA R33 DG_01	TDR Rec	IOSEL OND K\$1	TURK	ecloser G	ND 143 DG_014	Quick C			· · · · · · · · · · · · · · · · · · ·		
E0											Ħ			+	100%

Part of generated setting logic in spreadsheet template

Revenue Re

Lexinator

15

20

Time/s

10

Measurement-based dynamic equivalence

and model reduction

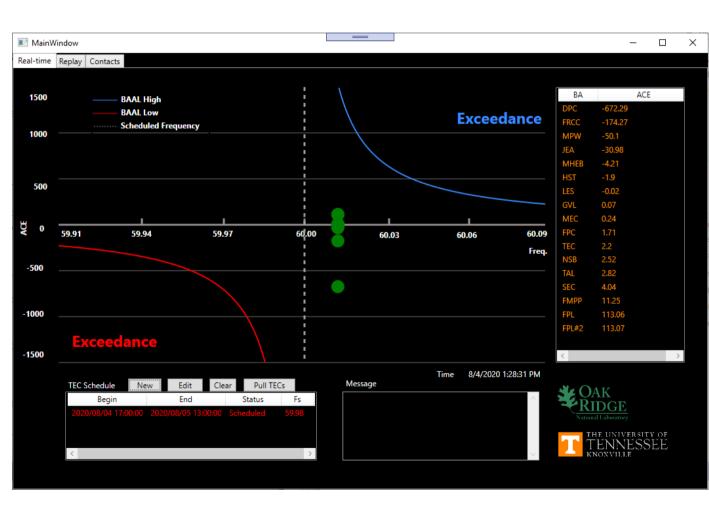
5

0

Char

ksonville

Measurement-based Model reduction for TVA Grids

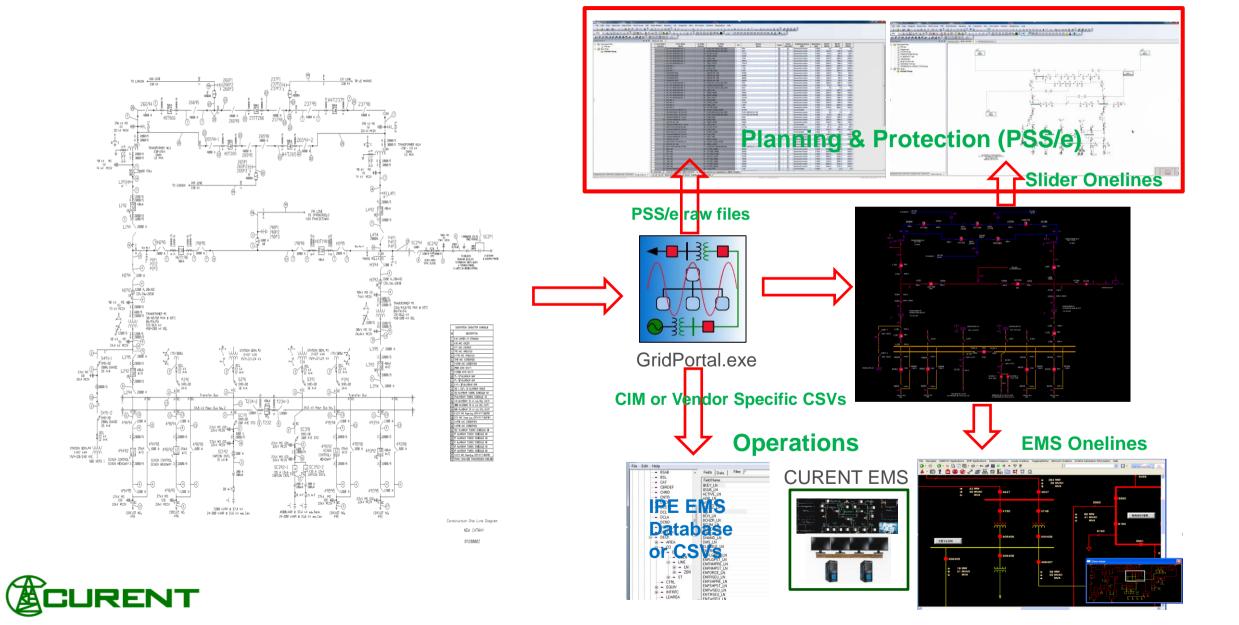

Balancing Authority ACE Limit Visualization

Features

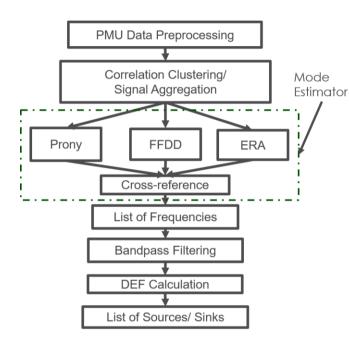
- Monitor the balancing performance \bigcirc of the balancing authorities (BAs) in the North American grids.
- Dynamically display the operating 0 conditions (ACE values).
- Consider the scheduled frequency 0 change during a time error correction (TEC) period.
- Allow operators to edit TEC Ο schedule.

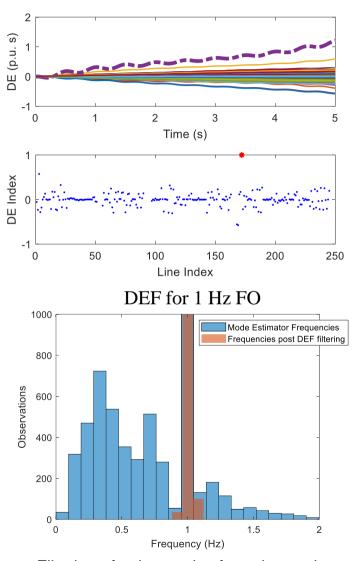
Future Enhancement

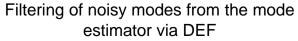
- Develop a replay version to help \bigcirc investigate past events.
- Automate the TEC setting \bigcirc procedure.



Substation Drawing Conversion Tool



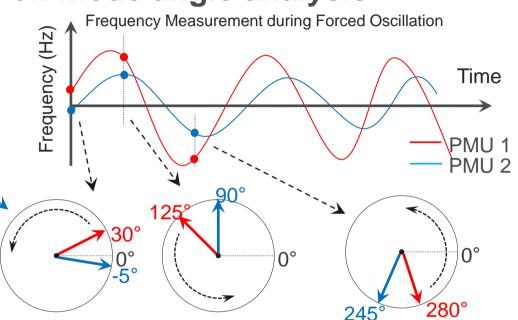

Speeding Up the Dissipating Energy Flow Based Oscillation Source Detection. Kenta Kirihara, Jun Yamazaki, Panitarn Chongfuangprinya, Stavros Konstantinopoulos, Christoph Lackner, Joe H. Chow.



Mode Estimator and Source Location Flowchart

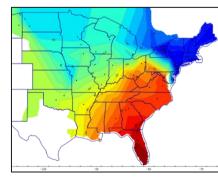
- A comprehensive mode estimation and forced oscillation source location tool was proposed.
- Correlation clustering applied to PMU channels.
- Results in decrease of computation effort, and in improved denoising and mode estimation accuracy.
- 3 methods used for cross reference of modal estimates.
- Dissipating energy flow used for source location purposes.
- Dissipating energy calculated for all identified "modes".
- Modes with small energy are filtered out, reducing false alarm rate.
- Method validated on 3 FO cases from the New England system.

Locating Source of Forced Oscillation

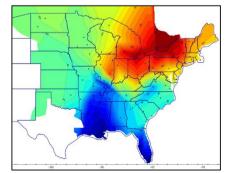

Locate the source of forced oscillation based on mode angle analysis
 According to observation, mode angle gradually
 reduces from the source area to other areas.

Steps:

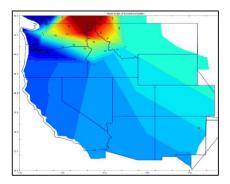
1.FFT analysis to obtain mode angle of the oscillation,


2. Geographically unwrap the mode angle;

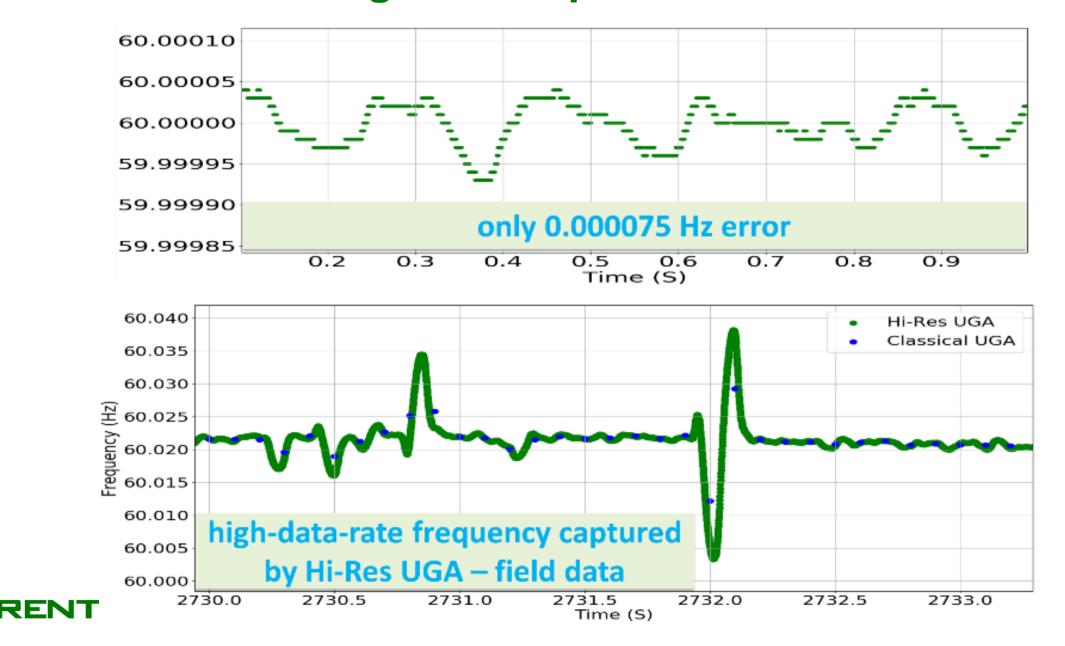
3. Area with the most leading mode angle is the source.



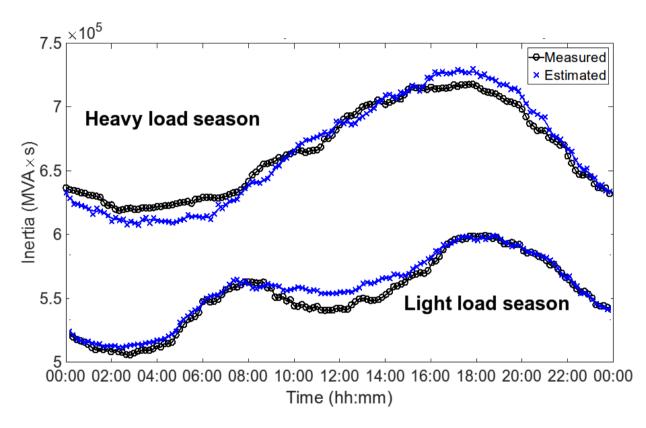
Cases:


El case on 01/11/2019 08:44

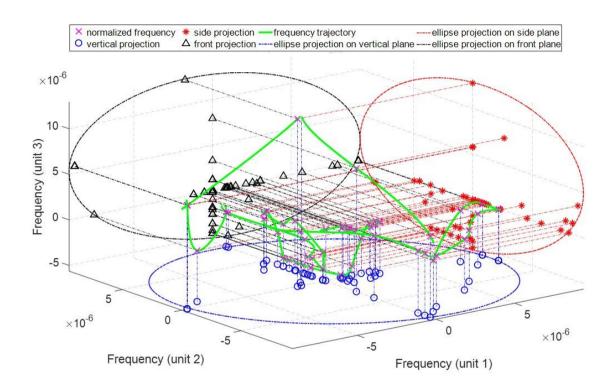
El case on 04/07/2020 09:36



WECC case on 04/28/2020

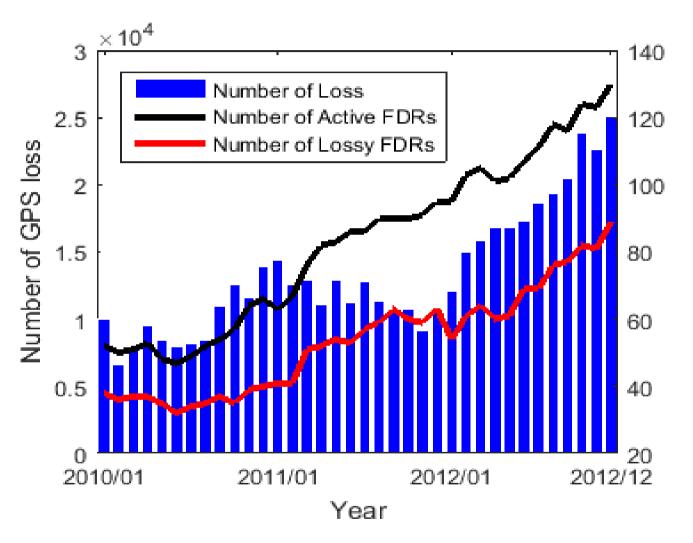


High Speed Frequency Estimation Algorithm Design and Implementation



Grid Inertia Estimation by Machine Learning from Ambient Synchrophasor Data

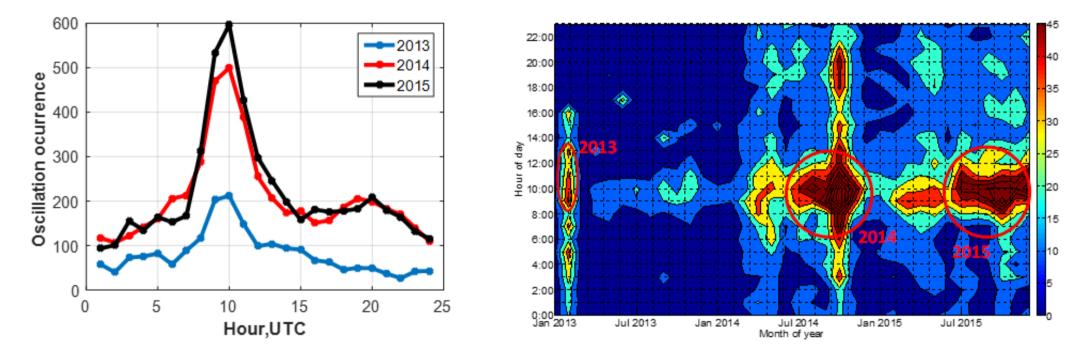
Comparison of measured and estimated daily inertia in WECC during heavy and light load seasons



Ambient frequency trajectory and the projection of characteristic ellipsoid at 100% inertia level

M GPS Timing Signal Loss in FDRs and PMUs

- Historical data from 80 PMUs and 100 FDRs from 2010 to 2012
- Over 50% of FDRs suffer from frequent GPS timing losses.
- Similarly, over 50% of sampled PMUs experienced GPS loss


Number of FDR GPS losses from 2010 to 2012

Event Based Oscillations Analysis


• A total of 12,238 inter-area oscillations detected from 2013 to 2015 in EI with dominant frequency mode between 0.1 and 1.2 Hz were investigated.

The hourly oscillation occurrence indicates that more inter-area oscillations were detected around 4 am local time.

Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

