

Faculty Research Overview

CURENT Annual Industry Conference April 29 and May 1, 2024 Knoxville, TN

Fangxing "Fran" Li

- **UTK John W. Fisher Professor, CURENT Director, LTB Lead**
- **Research Interests: resilience, demand response, power system economics, machine learning for power.**
- **fli6@utk.edu; http://web.eecs.utk.edu/~fli6/**

2023-24 Research Projects/Highlights

- 1. CURENT Large-scale testbed (LTB)
- 2. Development of Load Flexibility Valuation Methodology & Framework to Input into Planning Tools (**Southern Company**)
- 3. Networked Microgrids and Solid-State Power Substations Hierarchical Systems Frameworks (**ORNL**)
- 4. Production Cost Modeling to Assess the Benefit of Geothermal Deployment (**ORNL**)
- 5. Model-Free Adaptive Control (MFAC) for Autonomous and Resilient Microgrids (**DOD ESTCP**)
- 6. Adaptive dynamic coordination of damping controllers through deep reinforcement and transfer learning (**NSF**, PI: H. Pulgar)
- 7. An Equitable, Affordable & Resilient Nationwide Energy System Transition (EARNEST) (**DOE/Stanford**)
- 8. POSE: Phase I: Toward an Open-Source Ecosystem for Power Systems Research, Education, and Industry Applications (**NSF/Oklahoma State University**)

CURENT Large-scale Testbed (LTB)

Project Objectives

- To develop a closed-loop platform that includes both dynamic and dispatch/market simulation
- To enable dispatch-dynamic interfaced co-simulation

Recent Achievements

- Created Homepage for CURENT LTB
- Created Linkedin Account for CURENT LTB
- AMS development, benchmark, and release
- AGVis backend improvement with web application

Model-Free Adaptive Control (MFAC) for Autonomous and Resilient Microgrids (1)

Project Objectives

- Employ domain knowledge and **AI** to achieve autonomous grid-following and grid-forming controls for microgrids
- Achieve higher grid resilience
- Microgrid control under insufficient capacity
- Virtual Inertia Scheduling

Recent Achievements — Part I:

PQ Control with trajectory tracking capability [1]

- Developed inverter PQ control for trajectory tracking using physics-informed deep reinforcement learning
- Configurate modified Banshee microgrids in CURENT HTB and validate the controller through power HIL experiment

Power curve tracking the predefined trajectory Modified Banshee microgrid in HTB

4

Model-free adaptive PQ control based on physics-informed reinforcement learning and power HIL experiment

[1] B. She, F. Li*, et.al. "Inverter PQ Control with Trajectory Tracking Capability for Microgrids Based on Physics-informed Reinforcement Learning ", *IEEE Transactions on Smart Grid*, 2024.

**Results of PQ control with trajectory tracking
SESTEP**

Reward curve with and without model-based analysis

RENT

Model-Free Adaptive Control (MFAC) for Autonomous and Resilient Microgrids (2)

Recent Achievements - Part II:

V-f Control considering DER inadequacy [2]

- Developed decentralized and coordinated V-f control under insufficient resource capacity for islanded microgrids
- Mathematically proved the existence of equilibriums and small signal stability

Grid-forming inverter output following the limited DER capacity

Diagram of the proposed decentralized and coordinated control framework

[2] B. She, F. Li*, et.al. "Decentralized and Coordinated V-f Control for Islanded Microgrids Considering DER Adequacy and Demand Control ", IEEE Transactions on Energy Conversion, 2023.

Results of V-f control with DER inadequacy

1.1 0.8 $\frac{\text{N}}{\text{R1}}$ 1.0
 $\frac{\text{N}}{\text{R}}$ 0.9 $0.6 \leq$ $-$ Pl $-$ P3 \rightarrow Trigger V-f regulator $-0.4 \geq$ \rightarrow Load \rightarrow Trigger power $-$ P₂ increase regulator 0.8 0.2 0.70 $Q1, Q3 / MNa$
 $Q1, Q3$
 $Q1, Q5$ $\frac{0.4}{0.3}$ $\sum_{0.2}^{1.4}$ $\sum_{0.2}^{1.4}$ $-$ 01 $-$ Q3 $-$ Q₂ 0.60 0.75 $\sum_{S}^{1.3}$
 $\sum_{S}^{1.3}$
 $\sum_{S}^{1.3}$ $0.70 \leq$ $-$ s₁ $0.65 -$ S3 S₂ $S₂$ 0.60 10 12 14 18 20 6 16 $time / s$ $\overset{\text{N}}{\pm} 60.0$ - frequency $\begin{array}{c}\n\text{frequency} \\
\text{frequency} \\
\text{frequency} \\
\text{d} \\
\text$ $---$ lower limit \rightarrow Trigger power \rightarrow Trigger V-f regulator \mapsto Load increase 59.0 $\frac{a}{\omega}$ 1.000
 $\frac{b}{\omega}$ 0.975
 $\frac{b}{\omega}$ 0.950 voltage --- lower limit 0.950 10 12 14 16 18 20 6 $time/s$

\triangleright Formulation of VIS Inertia support cost $\min_{P,M,D} C_{gen}(P) + C_{aux}(P,M,D)$

Generation cost

1) Standard dispatch constraints s.t.

$$
2) \begin{cases} M_i^{\min, ibr} \leq M_i^{ibr} \leq M_i^{\max, ibr}, \forall i \in \{1, \cdots, N_{ibr}\} \\ D_i^{\min, ibr} \leq D_i^{ibr} \leq D_i^{\max, ibr}, \forall i \in \{1, \cdots, N_{ibr}\} \\ -RoCof_{\lim} \leq f_0 \frac{\Delta P_{e,t}}{M_t} \leq RoCof_{\lim}, \forall t \in \{1, \cdots, T\} \\ f_{\min} \leq f_0 + \Delta f_{nadir, t} \leq f_{\max}, \forall t \in \{1, \cdots, T\} \end{cases}
$$

[3] B. She, F. Li*, et.al. "Virtual Inertia Scheduling for Power Systems with High Penetration of Inverter-based Resources". IEEE Transaction on Sustainable Energy, 2024.

Recent Achievements - Part III:

Virtual Inertia Scheduling (VIS) for low inertia grids [3]

Model-Free Adaptive Control (MFAC) for

Autonomous and Resilient Microgrids (3)

- Proposed the concept of VIS, a security-constrained and economy-oriented inertia scheduling and generation dispatch framework for power grids with a large scale of **IBRs**
- VIS schedules the power setting points, as well as the \bullet control modes and control parameters of IBRs to provide secure and cost-effective inertia support.

Results of Virtual Inertia Scheduling (VIS)

\triangleright Comparison study of one-hour dispatch + time-domain simulation

(I) Constant power; (II) Fixed M & D, no reserve; (III) Fixed M & D, with reserve; (IV) VIS algorithm

Yilu Liu

- **UT/ORNL Governor's Chair, CURENT Deputy Director**
- **Research Interests: grid monitoring and applications, oscillation damping control, Inertia and grid strength, EMP impact, Micro Grid,**
- **Liu@utk.edu 865 266 3597, powerit.utk.edu, fnetpublic.utk.edu**
- 1. Forced oscillation source location tool (EPRI)
- 2. Forced oscillation source type classification (TVA)
- 3. EI system inertia trending study (Dominion)
- 4. Data center models (Dominion)
- 5. Digital twin for microgrid (Southern Company)
- 6. Adaptive oscillation damping control and field test (EPRI, NYPA, TERNA, DOE)
- 7. EMP susceptibility characterization of generation stations (ORNL, TVA, Domimion)
- 8. Secure timing system using pulsar signal (NSF)
- 9. BESS probing for inertia estimation in real time (NREL, KIUC, AES, GPTech)
- 11. Pump storage operation signature-based inertia estimation (WPTO, Dominion, TVA, PG&E)
- 12. Develop low cost syn-wave monitors for PV systems (ORNL, DiGiCollect).
- 13. OEDI Distribution state estimation, VW control, and transient data generation (ORNL, DOE SETO)
- 14. Virtual Operator Assistance AI based fast real time transient stability prediction tool (ORNL, DOE AGM)
- 15. FNET/GridEye data transmission, visualization, and real time applications (NERC, AGM)
- 16. Oscillation and inertia trending (ORNL)
- 17. Landfill site microgrid development feasibility study (EPB, KUB)
- 18. Real time grid frequency prediction (Apple)

2023-2024 Research Projects

ERCOT Frequency - Eclipse Time 18:00 -19:00 UTC

Map Source: https://science.nasa.gov/eclipses/future-eclipses/eclipse-2024/where-when/ Photo Source: Dr. Anil Pahwa

Probability Density of ERCOT (Eclipse hours)

Inertia Monitoring - El, WECC, KIUC

EI, WECC Inertia Trend 2012-2022 (DOM, ORNL)

e—Original Data

- Trendline

202201

Micro Grid Digital Twin (Southern Company)

Microgrid Components

- Photovoltaic generation \bullet
- Battery energy storage \bullet
- **Diesel Generation** \bullet
- **Residential load** \bullet

Digital Twin Functionality

- RMS voltage and current \bullet measurements
- 14 second measurement \bullet period
- Opal-RT real-time \bullet simulator

Building EMP Shield Effect (ORNL)

Rebar provides significant H field shielding throughout the frequency range

URENT

Tool Development

- Distribution three phase state estimator
- SPOT- distribution grid sensor placement tool
- Distribution Volt-Watt optimization tool
- Automatic DC to AC power flow conversion tool.
- Forced oscillation source location tool
- PSS/e to PSCAD model conversion tool
- Renewable integration tool in development
- Regional inertia estimation tool in development RENT

Hector Pulgar

- **UTK Associate Professor**
- **Research Interests: Power system stability and dynamics, energy storage systems and renewable generation.**
- **hpulgar@utk.edu**

2023-2024 Research Projects

- 1. Adaptive dynamic coordination of damping controllers: Enhancing oscillation damping through a datadriven approach (funded by NSF)
- 2. Towards enhanced grid robustness: Augmenting grid regulating capabilities through discrete controls on emerging power technologies (funded by NSF)

Adaptive dynamic coordination of damping controllers: Enhancing oscillation damping through a data-driven approach

Project Objectives

- Adaptability to faults and operating conditions.
- Modal-based and data-driven approaches.
- IBRs are used for damping control only when the system requires them (control commitment determined promptly using activation/deactivation signals based on our datadriven scheme)

Control coordination framework

Kai Sun

- **UTK Professor in Power Systems**
- **Research Interests:** Power System Dynamics, Stability and Control; Cascading Outages; Renewable Integration.
- kaisun@utk.edu

2023-2024 Research Projects

- 1. A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids (NSF, ANL)
- 2. Intelligent Phasor-EMT Partitioning for Hybrid Simulations to Accelerate Large-scale IBR Integration Studies (SETO/NREL, ISO New England, EPRI)
- 3. Mobility-Energy-Coordinated Platform for Infrastructure Planning to Support AAM Aircraft Operations (NASA/New Mexico State University)

A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids

Project Objectives:

- Developing a Heterogenous Multiscale Method (HMM) \bullet framework for automatic, case-specific model reduction on the fly of each EMT/phasor simulation.
- Developing variable-order variable-step semi-analytical \bullet solution (SAS) methods to accelerate EMT/phasor simulations
- Targeting a 10-100x speedup of EMT simulations on \bullet large-scale grid models with 50-100% IBR penetration.

HMM framework for simulating multi-timescale (EMT, electromechanical and quasi-steady-state) grid dynamics

High-order SAS method achieves a 5-20x speedup of accurate EMT simulation by using a 10-100x stepsize.

COMPARISON OF PERFORMANCE ON A 390-RHS SYSTEM

Intelligent Phasor-EMT Partitioning (I-PEP) for Hybrid Simulations to Accelerate Large-scale IBR Integration Studies

2. Parellelized Simulation on HPC

CPU core #2

CPU core #N

22

Project Objectives and Achievements:

- Intelligent determination of which portions of the grid to be simulated in EMT models while the rest in phasor models.
- Accelerated NREL's opensource simulator ParaEMT by integrating the SAS method.

I-PEP project overview

CPU core #1

1. Network Partition

Phasor Model

EMT Model

Mobility-Energy-Coordinated Platform for Infrastructure Planning to Support AAM Aircraft Operations

STATE

Project Objectives:

RENT

- Building power system testbeds to support Advanced Air Mobility (AAM) planning and operation studies.
- Evaluating the impacts of AAM operations on grid reliability and resilience based on power system reliability criteria.
- Accessing electric infrastructure readiness to support AAM aircraft charging.
- Supporting the optimal siting studies on UAM (Urban Air Mobility) and RAM (Regional Air Mobility) portals.

Concept of AAM in Tennessee and candidate locations for RAM portals

Kevin Tomsovic

- **UTK Chancellor's Professor and CTI Professor**
- **Research Interests: control, optimization, renewable energy integration, demand response, resilience, cybersecurity.**
- **tomsovic@utk.edu**

2023-24 Research Projects/Highlights

Recently Completed

- 1. WISP: Watching grid Infrastructure Stealthily through Proxies (**DOE, Raytheon**) (PI: F. Li PI; co-PI: J. Sun)
- 2. National Transmission Resilience and Reliability (**DOE**) (PI: F. Li)

Recently awarded and on-going

- 1. CPS: Medium: Secure Constrained Machine Learning for Critical Infrastructure CPS (**NSF**) (PI: J. Sun, co-PI: H. Qi, H. Lee)
- 2. A Novel Approach to Mitigating Communication Failures (**NSF**) (co-PIs: S. Djouadi, F. Taousser)

A New Approach to Control under Network Communication Delays

Project goals and previous accomplishments

- A new mathematical method to estimate the maximum allowed communication delay that does not violate the stability and performance of the power system.
- Manage continuous and discrete dynamics as switching between a continuous-time subsystem (when the communication occurs without any interruption) and a discretetime subsystem (when the communication fails) by introducing time scales theory.

Recent activities

• A stability criteria has been derived to estimate bounds of the communication loss duration, which guarantees the stability of the system.

Future works

• Test stability criteria in larger system with considering communication failure.

PIs – Djouadi, Taousser and Tomsovic (PI) Students: Yichao Wang

Exploring Physical-Based Constraints in Forecasting: A Defense Mechanism Against Cyberattack

Project goals and previous accomplishments

- Concern with Cyber attacks in machine learning systems \bullet
- Physical-based constraints can provide obstacles that makes \bullet attacks more difficult.
- Attacker needs to meet the constraints imposed by the \bullet physical/topology of system and evade any built-in detection mechanisms in the system.

Recent activities

- Proposed a framework to spatially investigate STLF for a \bullet defense mechanism (also for traffic systems)
- Applied similarity measures to explore physical-based \bullet constraint.
- Outperformed of SAX method, showing more sensitivity to \bullet false data injection.

Future works

Test stability criteria in larger system with considering \bullet communication failure.

Pis - Han, Qi, Sun (PI) and Tomsovic

Students: Mojtaba Dezvarei, Farhin Farhad Riya, Ony Hoque, Diyi Liu, Lanmin Liu, Quan Zhou

Spatial correlations

Correlation-based distance: $d_{COR}(X,Y) = \sqrt{2(1 - COR(X,Y))}$

• Periodogram-based distance:
$$
d_p(X, Y) = \sqrt{\sum_{j=1}^{[\frac{n}{2}]} [\rho_x(\omega_j) - \rho_y(\omega_j)]^2}
$$

$$
\bullet
$$
 Autocorrelation-based distance: $d_{ACF}(X,Y) =$

$$
\sqrt{(\hat{\rho}_{X_T} - \hat{\rho}_{Y_T})^T \Omega (\hat{\rho}_{X_T} - \hat{\rho}_{Y_T})}
$$

Symbolic representation SAX: Time series transforming into a string.

Euclidean-based distance:
$$
d_{EUC}(X,Y) = \sqrt{\sum_{j=0}^{N-1} (x_i - y_i)^2}
$$