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Abstract—Schematic-level optimization and steady-state loss
modeling play a vital role in the design of advanced power
converters. Recently, discrete time state-space modeling has
shown merits in rapid analysis and generality to arbitrary circuit
topologies but has not yet been utilized under rapid optimization
techniques. In this work, we investigate methods for the incorpo-
ration of rapid gradient-based optimization techniques leveraging
discrete time state-space modeling and showcase the utility of the
approach for use in the converter design process.

I. INTRODUCTION

Currently the process of designing a power electronics con-
verter is constrained by initial topology selection, analysis, and
design. The design process of a power converter often utilizes
several iterations of broad steady-state converter modeling or
simulation of many converter topologies, discrete components,
magnetics, and frequencies to achieve the goal performance,
as shown in Fig. 1. The design begins with application-based
specifications and constraints that should be adhered to in any
viable design and objectives that dictate the relative merit
of valid design candidates. Typical constraints include input
and output voltage, current, and power levels, as well as
physical restrictions such as the maximum size or height.
Objectives are the metrics used to compare different designs
if the constraints are met, such as efficiency, power density, or
specific power. From the constraints and objectives, a set of
possible topologies, operating methods, devices, and control
strategies is analyzed to determine an optimal schematic-level
design. The final design performance will be constrained by
how broad the initial selections of topologies and devices are
and the accuracy of the modeling and assessment of each
design candidate. Within a reasonable design time and effort,
this scope and accuracy are then determined by the speed and
fidelity of the modeling and optimization framework used in
the power converter design problem.

Recent work has shown that discrete time state-space mod-
eling reduces simulation time while maintaining results with
high fidelity [1], [2]. However, even with this decreased
simulation time, design and optimization across many contin-
uous variables and discrete topology/device selections can be
complex and computationally expensive even with advanced
computational power [3], [4]. Brute force approaches sweep
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Fig. 1. Overview of the broad scale optimization process in the early design
stage of power electronics.
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multiple parameters at a time through the design space, solving
the converter performance under each combination, to find
an optimal combination. While useful for understanding how
a variable affects converter performance, this and related
techniques are computationally taxing when used to optimize
all the variables in a converter design. Metaheuristic tech-
niques, such as genetic or particle swarm algorithms, are also
very popular to optimize converters but may also be time-
consuming for large-scale problems [5].

This work gives a framework to optimize converters uti-
lizing rapid discrete time state-space modeling and adapt-
ing gradient optimization techniques for discrete component
selection. The remainder of the paper is organized as fol-
lows. Section II reviews discrete time state-space modeling
and its ability to rapidly model switching power converters.
Section III provides an overview of the component selection
method. Section IV demonstrates the utility of the design
method through an experimentally-verified design optimiza-
tion. Section V concludes the work.

II. DISCRETE TIME STATE-SPACE MODELING

Discrete time state-space modeling is a generalized analysis
framework for both steady-state and dynamic modeling of
switched circuits [4], [6]–[10]. Switched mode power supplies
are modeled using discrete time state-space equations, approxi-
mating the converter as a linear equivalent circuit within each
switching interval i, defined by the state of each switching
element,

ẋ(t) = Aix(t) +Biu(t) (1)

y(t) = Cix(t) +Diu(t), (2)

where Ai and Bi are the constant state matrix and input
matrix, respectively. During any interval, the solution for the
state vector containing capacitor voltages and inductor currents
is

x(t) = eAitx(0) +A−1
i [eAit − I]Biu, (3)

assuming all input sources are constant and all Ai are invert-
ible. Iterating through the different linear equivalent models
captures the switching dynamic behavior of the converter.
By solving the state-space equation over the set of linear
equivalent circuits for a converter, the periodic steady-state
solution is

Xss =

[
I−

1∏
i=n

eAiti

]−1

×
n∑

i=1

[( i+1∏
k=n

eAktk

)
A−1

i [eAiti − I]Biu

]
, (4)

where ti is the length of the ith interval.
Some limitations associated with discrete time state-space

modeling have been addressed in prior work while continuing
to show rapid modeling of switch-mode power supplies [1].
This includes eliminating the requirement that all state matri-
ces Ai be invertible [8], [10], and determining the length of
each switching interval ti before solving (4) [2].
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Fig. 2. Synchronous buck converter used in Fig. 1 and Fig. 4.
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Fig. 3. Transistor equivalent model.

A. Diode Error Correction

At the end of each switching interval, the linear equivalent
of the circuit changes, and a switching action occurs. Inde-
pendent switching actions occur at planned instances during
the switching period, such as an external signal driving the
gate of a transistor. Dependent switching actions occur when
the state variables of the converter dictate a switching action
is required, such as a diode conducting when its forward
bias is reached. A state-dependent switching action results in
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Fig. 4. Waveform of a synchronous buck converter after the high side device
turns off. The initial guessed dead time length is too long between active
switching actions.



TABLE I
BUCK CONVERTER DEADTIME SOLUTION

Inital Solution

Time Interval t1 t2 t3 t4

Circuit Model A1 A2 A3 A4

Conducting
Devices M1 — M2 —

Final Solution

Time Interval t1 t2 t3 t4

Circuit Model A1 A2 A∗
2 A3 A4 A∗

4

Conducting
Devices M1 — M2,BD M2 — M2,BD

a nonlinear state-space description due to the time ti being
dependent on instantaneous state values.

An example of independent and dependent switching is
shown in Fig. 4. During the dead times of the converter,
the switch node voltage crosses the forward voltage of the
M2 body diode. The final steady-state solution, as shown in
Table I, shows the insertion of two additional switching actions
to correctly simulate how a physical circuit would behave.

An example approach to finding the duration and location
of dependent switching actions is presented in [2], using
successive approximate steady-state solutions to converge to
an error-free switching sequence that solves the converter
steady-state operation.

III. OPTIMIZED COMPONENT SELECTION

The rapid converter steady-state modeling enabled by dis-
crete time state-space modeling enables new modeling ap-
proaches to broad-scale optimization of power converters.
While the rapid modeling allows brute force methods to cover
a broader scope and metaheuristic optimization methods to
perform faster, there are formal techniques that take advantage
of the modeling framework.

As shown in Fig. 1, each of the design objectives used in
the optimization are outputs of the converter modeling, such
as power loss or power density. The inputs to the modeling
process include variables of a converter, such as the selection
of semiconductor and passive devices, topology, and switch
modulation strategy.

Approaches to optimize converters are already used within
the discrete time state-space modeling process itself. For
example, in order to account for state-dependent switching,
a first-order approximation is used to identify and correct
forward voltage or body diode violations iteratively to find the
converters steady-state [2]. A similar gradient-based approach
is used in this work to examine selection of discrete devices.

An example of a continuous space is shown in Fig. 5
for the conduction resistance and output capacitance of a
power transistor. For some hypothetical converter, contours of
constant power loss are represented by the solid lines with the
gradient shown via the purple hue. The arrows point in the
direction of steepest descent.

Coss

Ron

Ploss

Fig. 5. Continuous representation of a transistor power loss swept across
output capacitance and conduction resistance.
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Fig. 6. Gradient method for a transistor optimization overlaid with discrete
devices.

While the gradient-based approach can be used, there are
additional constraints that must be considered. Many input
variables to the modeling are not continuous and/or are
unordered, such as the selection of converter topology. The
selection of power devices among discrete transistors, in
contrast, can be arranged into a pseudo-ordered multivariable
space of the individual device parameters where gradient-
based methods may be used.

An example of a gradient-based, discrete optimization ap-
proach is shown in Fig. 6. An initial discrete point is chosen
and modeled to assess the converter’s power loss Ploss,IC . The
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Fig. 7. Steepest descent line compared to discrete devices within the design
space.
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Fig. 8. Buck-boost converter schematic (a) optimization process (b) modeled results (c).
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Fig. 9. 4V switched capacitor Fibonacci sequence schematic (a) optimization process (b) modeled results (c).
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Fig. 10. Buck Switched Cap schematic (a) optimization process (b) modeled results (c).

parameters of the converter semiconductors are then perturbed
by ∆Ron, ∆Coss to determine their effect on the converter’s
performance, Ploss,∆x. The perturbations, however, are not
discrete points defined by other semiconductor devices, but
rather scaled to accurately estimate the steepest gradient of
the converter power loss at the initial condition. The perturbed
performance metrics, Ploss,∆Ron and Ploss,∆Coss , are solved
using discrete time state-space modeling. The vector of steep-
est descent is then approximated by solving for the slope of

the output perturbation over the input perturbation,

mgd =

∆Ploss,∆Coss

∆Coss

∆Ploss,∆Ron

∆Ron

∣∣∣∣∣
MIC

. (5)

In this example, the vector of steepest descent, v, is a line with
the slope from (5) through the initial device MIC with power
loss Ploss,IC . This methodology can be expanded to higher
orders to account for multiple input and output modeling
variable possibilities.
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Fig. 11. 8V Switch capacitor Fibonacci sequence schematic (a) optimization process (b) modeled results (c).
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Fig. 12. Switched capacitor Fibonacci sequence schematic (a) optimization process (b) modeled results (c).

The next transistor to be modeled must now be selected
from the direction of steepest descent. However, stepping too
far from the initial condition will result in large potential
error from the localized approximation in (5). Therefore, the
selected device for the next iteration is the device with the
minimum distance, d(), from MIC plus the minimum distance
to the steepest descent vector v using mgd as shown in Fig. 7,

MIC+1 = min[eICd(MIC ,Mi)] + evd(Mi,v)]. (6)

The variables eIC and ev are weighting coefficients that shift
the next selection to be closer to MIC or v. To help speed
up the optimization, the five closest points according to (6)
are approximated using projections from Ploss,∆x. The most
efficient device is chosen for the next iteration.

IV. EXAMPLE DESIGN OPTIMIZATION

The proposed modeling and optimization techniques are
used to design an example converter for battery charging
applications. In order to verify the proposed method, several
topologies are designed to find an optimal converter with a
16-20 V input and up to a 40 W, 8 V output showcasing
the discrete time state-space models and the optimization
framework for discrete transistors.

A. Modeling

Five topologies shown in Fig. 8-12 showcase the optimiza-
tion process. Each of the transistors within the converter are
optimized to reduce Ploss. Each figure shows the topology
schematic, the iteration path of the transistor selection, the
process for a common database of commercial transistors, and
the resulting steady-state efficiency at a range of power levels
and input voltages.

B. Experimental

The switched capacitor Fibonacci converter shown in
Fig. 13 is selected to experimentally validate the modeling
method. For the prototype, the design was constrained to have
all the same transistors, rather than optimizing each device
individually as in the previous section. The transistor EPC2055
was chosen via a sweep of the design space, as shown in
Fig. 14. Additional converter parameters are given in Table II.
As shown in Fig. 13, the broad steady-state modeling matched
experimentally-measured power loss with acceptable error.

V. CONCLUSION

This work proposes a method to quickly optimize power
converters by leveraging discrete time state-space modeling.
A gradient-based optimization method is used to rapidly solve
discrete converter parameters across a wide input voltage and
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Fig. 13. Switched capacitor Fibonacci prototype (a) experimental waveforms
(b) modeled vs experimental results at 30 W output power (c).

TABLE II
SWITCH CAPACITOR FIBONACCI CONVERTER PARAMETERS

L 0.65 µH Po 0-40 W
C1−4 10 µF Coss,M1−16 408 pF
RL 10mΩ Rds 3.6mΩ

Vg 16-20 V fs 1.2 MHz

power range, as well as numerous topologies. The design
framework was also experimentally verified using a switched
capacitor Fibonacci converter.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Number 1751878.

This work made use of Engineering Research Center shared
facilities supported by the Engineering Research Center Pro-

Fig. 14. Switched capacitor Fibonacci transistor design space where all
converter transistors are the same. The optimal point, shown by the black
circle, is the EPC2055 transistor. Ploss is a weighted mean of hundreds of
simulations for each transistor between the input voltage and output power
range .

gram of the National Science Foundation and the Department
of Energy under NSF Award Number EEC-1041877 and the
CURENT Industry Partnership Program.

REFERENCES

[1] J. A. Baxter and D. J. Costinett, “Converter analysis using discrete time
state-space modeling,” in 2019 20th Workshop on Control and Modeling
for Power Electronics (COMPEL), June 2019, pp. 1–8.

[2] J. A. Baxter and D. J. Costinett, “Steady-state convergence of discrete
time state-space modeling with state-dependent switching,” in 2020
IEEE 21st Workshop on Control and Modeling for Power Electronics
(COMPEL), Nov. 2020, pp. 1–8.

[3] K. Hermanns, Y. Peng, and A. Mantooth, “The increasing role of design
automation in power electronics: Gathering what is needed,” IEEE Power
Electronics Magazine, vol. 7, no. 1, pp. 46–50, March 2020.

[4] R. D. Middlebrook and S. Cuk, “A general unified approach to modelling
switching-converter power stages,” in 1976 IEEE Power Electronics
Specialists Conference, 1976, pp. 18–34.

[5] F. Wang, G. Chen, D. Boroyevich, S. Ragon, M. Arpilliere, and V. R.
Stefanovic, “Analysis and design optimization of diode front-end rectifier
passive components for voltage source inverters,” IEEE Transactions on
Power Electronics, vol. 23, no. 5, pp. 2278–2289, 2008.

[6] G. C. Verghese, M. E. Elbuluk, and J. G. Kassakian, “A general
approach to sampled-data modeling for power electronic circuits,” IEEE
Transactions on Power Electronics, vol. 1, no. 2, pp. 76–89, 1986.

[7] D. J. Costinett, “Analysis and design of high efficiency, high conver-
sion ratio, dc-dc power converters,” Ph.D. dissertation, University of
Colorado at Boulder, 2013.

[8] H. R. Visser and P. P. J. van den Bosch, “Modelling of periodically
switching networks,” in PESC ’91 Record 22nd Annual IEEE Power
Electronics Specialists Conference, June 1991, pp. 67–73.

[9] F. C. Y. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, “Generalized
computer-aided discrete time-domain modeling and analysis of dc-dc
converters,” IEEE Transactions on Industrial Electronics and Control
Instrumentation, vol. IECI-26, no. 2, pp. 58–69, May 1979.

[10] A. Kumar, J. Lu, and K. K. Afridi, “Enhanced-accuracy augmented state-
space approach to steady-state modeling of resonant converters,” in 2015
IEEE 16th Workshop on Control and Modeling for Power Electronics
(COMPEL), July 2015, pp. 1–6.


