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Early Years

Artificial Intelligence

A field "of computer science concerned with designing
intelligent computer systems, that 1s, systems that exhibit
characteristics we associate with intelligence in human
behavior - understanding language, learning, reasoning,
solving problems, and so on. [Feigenbaum, Stanford]”

=>» Much of the development in the 1960s was on more
general intelligence. This was found to be
extremely difficult and led Feigenbaum to propose
more specialized systems.
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Knowledge-Based Systems

* The general Al approach eventually Expert Systen
morphed |nto the Concept Of Problem input Solutien cutput

g {
knowledge-based systems and more -
specifically Expert Systems Donain knowledge

o MYCIN - Diagnostic system for blood » . - -
disease infection B ®@g

o SID — Design aid for the VAX 9000 “ﬁ — rase
SyStem {blackboard)

=>» These were very specialized systems
with a general “engine”
ECURENT



Historical Development in Power Systems

» Earliest applications in nuclear power and security assessment
(1970s)

* Numerous projects by mid 1980s

« Example application areas
— Alarm processing
— Diagnostics
— Load forecasting
— Operations
— Security assessment
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Knowledge Representation

* How to represent knowledge of some specific
domain in an

efficient and clear manner?
o (QGraphs/trees — example diagnostic trees

o Rules — typically i1f-then statements
o Objects

=» Emphasis on relationships between data, not
data types and not on algorithms

ECURENT



Knowledge Representation
Rules

IF-THEN Structures B —

] EX amp 1 e : -— 3-phase, 4-wire primary feeder

Feed point
/ Lateral Vs MO,
eeeeeee

IF a feeder can be restored from a tie switch  ___| sk s &
AND there is sufficient capacity on that feeder 7% 7 Fmes

Switched L

THEN restore from that tie switch = WMT

Section

I"su.“gt‘:h‘ - l

| IR
Serving < to 20 houses y

—

=» Raises the question of then how are rules applied
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Solution Mechanisms
Inference

Need generic approach to applying rules but must have

* Appropriate context
o Example: Load priority rules when system overloaded

* Appropriate sequence
o Example: Restoration after fault 1solation

=» This information must be encoded in the rules so one
can use a general logical approach

ECURENT



Solution Mechanism
Rule-chaining — forward chaining (data-driven)

Conditions = conclusions

* Example: Restoration
Rule A: IF outage THEN search for restoration path
Rule B: IF searching for restoration path
THEN look for feeders with excess capacity
* Inference process
Outage =» Apply rule A
After applying rule A = Apply rule B

ECURENT
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Solution Mechansims
Rule-chaining — backward-chaining (goal driven)

Conclusions ==> conditions
* Example: Transformer diagnostics

Rule A: IF a thermal fault in transformer

THEN [H2] will be elevated in oil

* Inference process
Detect elevated [H2] =» thermal fault

Fact 1

Fact 2

Decision 4

Fact 3

Decision 2

Fact 4

ECURENT



Solution Mechanisms
Rule-chaining — design criteria

Search from fewer to greater possibilities
* Example: Remedial control action

IF outage A

THEN control action C

* Assume number of possible outages far fewer than possible
control actions then you want to use Forward-chaining

ECURENT
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VCES — Voltage Control Expert System

Power flow equation

R =V Zvj(Bij sin(d, — 6;) +G;; cos(4 _5,))
-1

Q =V, Zn:Vj(Gij sin(4 — ;) — By; cos(4 — 9;)
\oltage dependent loads

I:)i = I:)io\7;?li Qi = Qlov?l
_oad voltage constraints

—min — max

Vi <V, <V,

ECURENT
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Transmission System
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Controls and Constraints

 Shunt capacitors
Qimin SQi < imax

 Transformer tap changers

timin < ti < timax

 Generator voltages

—min — Mmax

Vi <V, <V,

ECURENT .



Heuristic (empirical) rules

» It Is most efficient to apply VAR injections locally

» Position of local tap changer can be raised (lowered) to
correct low (high) voltage
— May cause other voltages to drop

 Generator bus voltages can be raised (lowered) to solve
the low (high) load voltage problems

ECURENT
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Justication for a Rule 1

Transmission System

|_

Assume
1) Load voltages near 1.0 p.u. O—N
2) Transformer tap settings near 1.0 O—r

3) Line angles near O
4) Lines lossless

If reactive compensation Q Is applied at bus |

then _ _
AVi > AV ;

ECURENT
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Justication for a Rule 2

O—H IR

Transmission System

Assume 1) -4) hold O—1 .

If the tap position t Is raised at bus I then

ECURENT
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Justication for a Rule 3

ECURENT

Assume 1) -4) hold

If the generator voltage Is raised at bus 1 then

AV | >0

O—+

O—

Transmission System

|_
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Compare to using Optimization (Linear Program)

ECURENT

minC' x

Q.tV

such that

x>0
Ax=Db
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Comparison between LP and VCES

» VCES solves scenarios in a single iteration while LP requires
multiple iterations

» For more severe problems, VCES uses fewer controls

 LP has problems with small unrealistic control adjustments and
other hard to represent constraints

« VCES approach is generally faster

« VCES tends to provide a better voltage profile

« VCES performance improvement greater with severe problems
« VCES can explain performance

=» But VCES doesn’t guarantee performance
ECURENT
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Uncertainty/Subjectivity in Knowledge

Almost all expert systems have to deal with some more of
uncertainty that rarely fits standard probabilistic approaches

* Representations

o Subjective probability
o Certainty factors (MY CIN)
o Fuzzy logic (Zadeh)

* Membership functions represent use of generic terms, €.g., small, medium
and large

ECURENT y



Limitations of Knowledge-Based Systems

* Incremental improvements (adding new rules) may be difficult.

* Development often slowed by the process of extracting
knowledge from human experts.

* Computational efficiency concerns for systems with 1000s of
rules. Few expert systems can adapt logic to time constraints.

* [t may be difficult to evaluate performance evaluation

* User acceptance of a new technology may be slow, unless
coupled with explanation systems

=>» Al research (most) has moved on to learning from data

ECURENT
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Terminology

« Artificial intelligence

« Backward-chaining/goal-
oriented

 Certainty factors
« EXpert systems

« Forward-chaining/data-
driven

* Fuzzy sets and logic
» Heuristics
 |Inference engine

ECurRENT

Intelligent systems
Knowledge-based
Knowledge representation
Logic programming
Model-based reasoning
Objects/frames
Rule-based

Subjective probability
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Overview of Artificial Intelligence, Machine
Learning, and Deep Learning
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Artificial Intelligence & Machine Learning

« Atrtificial Intelligence (Al) refers to the creation of intelligent machines that can
perform tasks that typically require human intelligence, such as recognizing
speech, making decisions, and understanding natural language. Main areas:

o Expert systems (rule-based, knowledge-based)
o Machine learning

 Machine Learning (ML):
o  Supervised learning (labelled data)

o Unsupervised learning (data not labelled, for clustering)
o Reinforcement learning

o Semi-supervised learning

ECURENT
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Deep Learning

* Deep Learning (DL): typically involves deep neural networks (DNN) or similar
architecture with multiple layers in the network.

Deep neural network
Input layer Multiple hidden layers Output layer

* Deep learning structures:
o Deep neural networks
o  Convolutional neural networks
o Deep belief networks
o Recurrent neural networks
o Long short-term memory
o  Graph neural networks
o  Transformer

A typical DNN with multiple hidden layers.

ECURENT .



Artificial Intelligence, Machine Learning, & Deep Learning

Expert systems
. (Rule bases,

Artificial Intelligence:
Knowledge bases)

Mimicking the intelligence or
behavioural pattern of humans
or any other living entity.

Supervised learning

Machine Learning: » Unsupervised learning
A technique by which a computer Reinforcement Iearning

can "learn" from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from
datasets.

DNN, CNN, DBN,
" RNN, LSTM, GNN,
GAN, Transformer, etc.

Deep Learning:
A technique to perform
machine learning
inspired by our brain's
own network of
neurons.

ECURENT N
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Deep Reinforcement Learning

* Reinforcement Learning + Deep Neural Network = DRL

\/ gen \

State - Action
> Agent DNN
Reward N 8 8 O
State |s—) 0 @ mmm) | Action
. O OO
Environment ~“OF OO
RL: Essentially a trial-and-error process Policy Tr(s,a)

\_ /
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Mythology of Reinforcement Learning

» Value: value of state-action pair (s, a)
» Policy: map state to action
» Stochastic policy: probabilistic

DRL (Year) distribution of action
Value-based | Policy-gradient » Deterministic policy: deterministic action
l_ Stochastic Policy Deterministic Policy
Q-learning (1993) 0 DON: deep Q-learning
l l O DDQN: Dual deep Q-learning
O Rainbow DQN: ‘Rainbow’ deep Q-learning
DQN (2014) l l DPG (2014) O TRPO: Trust region policy optimization
TRPO (2015) A2C/A3C (2016) Q PPO: Proximal policy optimization
DDQON (2015) l l DDPG (2016) O PPG: Phasic policy gradient
l PPO (2017) SAC (2018) l O A2C: Advantage Actor-Critic
_ 0 A3C: Asynchronous Advantage Actor-Critic
Rainbow DQN (2017) } TD3(2018) O SAC: Soft Actor-Critic
PPG (2020) O DPG: Deterministic policy gradient (DPG)
O DDPG: Deep Deterministic Policy Gradient
O TD3: Twin Delayed Deep Deterministic policy

gradient (TD3)

ECURENT N



AlphaGo - An Epic Achievement of Deep Learning

» (o, also known as Weiqi or Baduk
« Astrategic board game originated in China over 2500 years ago

« Broadly considered by mathematicians and computer scientists as the
most complex board game and the best testbed for artificial intelligence

» Big news in Al in 2016

AlphaGo (by Google DeepMind) beat World Champions in
2016, at least 30 years earlier than expected.

Based on deep reinforcement learning 5 Geact chatpionCopiey

A featured cover article was published in Nature in 2016 by ALLSYSTEMSGU
the AlphaGo team

\\
I Illl H

N\II\IIHI\IMH

» Further improved:
D. Silver, A. Huang, C. J. Maddison, A. Guez,
AlphaGo Zero (2017), AlphaZero (2018), and MuZero (2019) L. Siffe. G. Van Den Driessche, et al
“‘Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529,
no. 7587, pp. 484-489, 2016.
ECURENT
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Deep Learning: Motivation and Development

« Motivation and Development
o  The core idea behind deep learning: successive layers of representation.
o  Examples of representation: 1) image in its RGB matrix; 2) figure in its binary code.

o The term “deep” refers to the multiple layers that are connected end to end to learn the data
representations — automates the feature extraction.

o  The idea of multi-layer representation is based on the assumption that the data in the real-world can all be
regarded as composition of features.

o  Current research works have explained how multiple-layer network in a hierarchical structure captures local
features and gradually forms the high-level concept.

o It is combined with reinforcement learning to form deep reinforcement learning (the key structure of
AlphaGo).

 Why is “deep” so powerful?
o  Many more hidden layers allowing NN to learn more complex patterns with more complex representations.
o  Enabled by new hardware — GPU, TPU, etc.
o  Better software, better data management, etc.

» Majority of recent Al applications in power are based on deep learning.
CURENT 0



Deep Learning Application in Power

- Deep CNN-based Contingency Screening with Uncertain Scenarios

31
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Multi-scenario Security Screening

« The increasing penetration of renewable energy makes the traditional N-1 contingency
screening highly challenging when a large number of uncertain scenarios need to be combined
with security screening.

« The combination can be a very complicated search problem, e.g., in the scale of NS where N is the
number of (uncorrelated) wind plants and s is the number of scenarios.

« A data-driven method, similar to image-processing technique using deep convolutional neural
network (Deep CNN) method, is proposed for accelerating multi-scenario N-1 contingency
screening.

ECURENT .
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A Brief on Deep Convolutional Neural Network

 Deep convolutional neural network (deep CNN): an artificial neural network with multiple

hidden layers.
« Strong automatic feature extraction ability in possessing data with grid-like structure, i.e.,

Image data.
«  With a hierarchical structure, it mimics the visual cortex of human.

\ , . filter
“ons L \ »
A

original image RGB parameter I Convolution operation: I
| P ' |

Ros.e:.O ‘(Im :|'(i,j)=ii|(U,V)(0(U,V)+b i

y [

. 9 " / | U:]. V:l I
Lily: 0 feature extraction

identification

output

ECURENT
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Analogy to Image Classification

channels
-

Original image =
2
=

fb———width——|
01 O gln_ b, b, by,
0,0 9 - Oy b,, by, - b,
Power system e e L L 7
tOpOIOgy inj,1 0 O anj,l 0 0
0 Pinj,2 O O anj,Z 0
0 0 Pinl, L O 0 - Qu.f .

Similarity between image processing data and power system raw data
structure and sparsity.

ECURENT

Pixel matrices

Bus admittance
matrices and
power injection
matrices

. grid-like
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Mapping Power System Data to Deep CNN Input

n
Prii =V ZVJ‘ (gij CoS &, "'bij Sin 6’.,)
i1
n
Qi =V, ZV,' (gij sin g, _bij COS 9”)
i1
System parameters ‘ Simplification

9: G - Oy _bu b12

P

G B G G| g e B b » Q- |
_g.nl g.nz g.nn_nxn _b;1l b;z b;n_nxn B=[b, b, -

_pmj,l 0 « 0] _qmj,l 0 -« 0] ‘
P= O piTj’Z O Q= O qi?j'Z 0 V=V Vo, Vil

I P KR I UR U i I 0=1[01,0,...,0 ]

ECURENT
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Deep CNN for Security Screening

Convolution operation: Aggregate local features with different weights
c-1c-1

oo (1) = S (i +U, j+V) - o(u,v) +b

u=0 v=0

Activation function: Delinearize the affine transformation

|G )=o( (i)

Loss function: Calculate the mean square error between the output and the actual
values

L= NLZ& (6, -0, + > 07, ~%,.)) - ; log(y.)

s s=1 i=1

Chain rule: Update the weight and bias parameters
(k) k
wy_ wo_, 0L Mo 89"
T, 8, g

N, -1 N, -2 |

W,

ECURENT

36



Design of Deep CNN Structure

37

T
O
=

o Convd

3x3x12, 24
3x3x1, 12 ’
Conv1
+
ReLUR
[3,n] 12 [3,n]
Input: [B;P;Q]
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T
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X
N
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>
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Input: B; P; Q (3 X n matrix)
Output: voltage (2 X n matrix); system security status (1 X3 vector)

81

Vi

V2 )

Vi

Vn

—

OO
OO
OO

S
&

Two convolutional layers, three fully-connected layers

[2.n]

alarm

...|6,] Output
voltage

Output:
system

Secure  security

insecure

[1,3]

status
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Security Index

« A security index is needed for evaluating system operation status based on power flow
results. Here we use:

1
d dl_ d om SI=0: secure
(%)Zm_l_ (A)Zm_l_ (_p,l 2m

i gv,i Z g\l/,i ZI: gp,l

voltage line flow

secure limit | I o I | l 4

alarm limit  — W_j

I I u u
gv,i dv,i dv,i 9y, dp,l. .gp’l.
lower limit of voltage upper limit of voltage transmission line
capacity

ECURENT

0<SI<1: alarm ‘
SI>1: insecure LS =
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Case Studies (1)

AC POWER FLOW RESULTS OoF DEep CNN

Training

Test

Errors
0 \Y,

Training |Classification
time(s) Accuracy

3292 1412 6.1e-3 7.2e-4 11.42 97.24%
0 4262 1066 1.5e-3 5.4e-4 23.06 96.25%
/ 3360 1440 4.9e-3 1.6e-3 31.59 99.24%

118 3027 1298 7.5e-3 2.9e-4 57.88 100.00%
181(WECC) 2530 1085 5.7e-2 3.8e-3 65.04 97.70%
300 3445 1477 6.9e-2 2.3e-3 148.91 99.05%
1354 (Eu.) 3981 1707 1.1e-2 1.9e-3 1548.94 96.84%

« Tested on the IEEE 9, 30, 57, 118, and 300-bus systems, WECC 181-bus system,
and European 1354-bus system

« Considered load uncertainty, renewable generation variation, and N-1 contingency in
each ACPF case

» Load forecast error ~U(0.8,1.2), Wind speed forecast error ~N(0,0.05"2)

ECURENT
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Case Studies (2)

TEST TIME COMPARISON & ACCELERATION

1412 0.017 3.500 206
1066 0.016 3.303 206
1440 0.018 4.323 240
1298 0.021 4.905 234
1085 0.025 4.655 186
1477 0.044 10.15 231
1707 0.264 34.13 129

 Software: TensorFlow

« Hardware: Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory
and 1.582 GHz core clock

ECURENT



Case Studies (3)

3
57

118

181

300
1354

« The results on 1354-bus system is not available for ANN due to out-of-memory

0
2.0e-2

9.0e-3
2.7e-2
2.7e-2
1.8e-1
2.0e-1

(OOM) issue.

« Deep CNN is more efficient in feature extraction and computation.

BCURENT

\Y;
2.3e-3

2.4e-3
9.0e-3
9.0e-4
1.3e-2
S5.7e-3

0
6.1e-3

1.5e-3
4.9e-3
7.5e-3
S.7e-2
6.9e-2
1.1e-2

\Y

7.2e-4
o.4e-4
1.6e-3
2.9e-4
3.8e-3
2.3e-3
1.9e-3

TEST TIME COMPARISON OF DCNN vs. ANN

Errors (ANN) deEerO(;ilN

Classification
Accuracy

91.64%
87.43%
92.43%
98.54%
75.94%
78.00%

Classification
Accuracy

97.24%
96.25%
99.24%
100.00%
97.70%
99.05%
96.84%
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Deep CNN-based Contingency Screening with Uncertain Scenarios

» Summary

« A power system can be modeled with matrices similar to the models of images such that some
Al-based image processing technigue can be utilized.

« The deep CNN is constructed as a classifier to evaluate system security status based on power
system raw data.

« Compared with the conventional model-based method, the proposed deep CNN has high
computational efficiency (achieving over 100x speedup), while maintaining considerable
classification accuracy (98.05% accuracy in average), which can be a promising tool for future
real-time applications.

Y. Du, F. Li, J. Li, T. Zheng, “Achieving 100x Acceleration for N-1 Contingency Screening with Uncertain Scenarios
using Deep Convolutional Neural Network,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3303-3305,

@DUR July 2019.
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Extension: Deep CNN for Cascading Failure Assessment

3531 > 2 3>3x12>24

Output:
=, [Conv2 Bus voltage angle 0 = [01,0,,-*+,0,]
Convl] ge ang
. i RT_U And bus voltage = [Vi Vz Vil : : :
ReLU e+ - qmalgnltude ‘ « DCNN is combined with
[3.n] 12 Reshape -Fi
Input: [Pg;Qq;Bii (3] 34 15 [1,20] Depth First Search
[3>124, 251 to the voltags
[FC4] [ FC3] [FC2] vector to
gg%g + iiiiii + NANNNAAN + l represent the
SR B HERE FeLU RRRRRE FelU SRRNEN pbolosy change
Y Sl @m | 4m Il @m SSNSNN q@m SNNNNNNY @m | |
index § NNNY NNNANN NNNNNNAN
value 5 AR SN NNNRRNRY [1,3>0]
RNy NRNNRY [3>1n, 12>n]
[n,1] [6>N, n] [12>N, 6>0]

« Two convolutional layers and five fully-

Training | Test time (S) Test time (s) | Acceleration
connected layers tlme(s) (deep CNN) | (model-based) ratio

 Loss function: Mean Square Error | 57-bus 0.16 225.85 1,412
24,692 5.7 8,185 1,436

:_Z( Z( eiys)z+%Zn:(v:s—viys)2+(SI:—SIS)2)+%wTw

s s=1 i=1

Y. Du, F. Li, et al, "Fast Cascading Outage Screening based on Deep Convolutional Neural Network and Depth-First
L= Search," IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2704-2715, July 2020. 43



Deep Learning Application in Power:

- Physics-informed DRL for Inverter PQ Control in Microgrid

44



Background

[@: Disturbance

Solar PV and Wind DERs

Battery Storage n = -
'

Utility

Substation Microgrid Operation

and Control Center

Geothermal
Power

Diesel Generators Hospltal |

IX %Ideal esbonse Key ldea: In the event of a disturbance, keep the actual response
P following the desired trajectory by adaptively adjusting the control
Unsatisfactory response g ains [1]
Desired P Li, H., Li, F., Xu, Y., Rizy, D.T. and Kueck, J.D., “Adaptive voltage control with distributed energy resources:
traiecto Not well-controlled P Algorithm, theoretical analysis, simulation, and field test verification,” IEEE Transactions on Power
0 jectory Well-controlled P Systems, 25(3), pp.1638-1647.

- . . ‘ . . . . . . )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
E time (s)
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Physics-informed DRL for Microgrid Control

Deep Reinforcement Learning Agent in Python

Numerical Environment
in Matlab-Simulink

Buffer

state observation
AP/QICf 7, T]

_________________________________

v
Critic Network

Actor Network

—

action [k, kpi, kig, ki1, T']1  |Actions| E

[+
Jreward

T
—Qvalue T Microgrid LnJ

control center

 Offline training

plus

adaptive gains

Power HIL Environment in CURENT HTB

(] Online demonstration

Diagram of implementing model-free reinforcement learning in microgrid PQ control

CURENT

Model-based analysis
reduce learning
space from function
space to real space

_______

..............

Ko (). ki () € T (1)
KooKo1 K Ky € R

pO? *pl? %0’
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Test Microgrid and Training Results

BUS101

Main grid

100

13.8kV

5000kVA
13.8/0.48KV
) c1ot
5% XR=544 0L 101 102
1-4500 c102
| 5500t
BUS102

1-#500

103 C103
1000ft
1-4/0

=— BUS103

4.75%, XIR =4.7

BUS105 f1G
106 107 T106 118
502;&8/1A T102 500kVA 4000kVA
2500KVA 13.8/0.208KV T108 Diesel
C106 iese
o s 13.8/0.48V 1500ft %, XIR =4.9 2500kVA
o KRS 5.75%, XIR=66 1-#500 13 8/0.48kV
12 5 56%, X/R =5.42
1 250kVA 2500kVA
300kVA 108 oy
BUS104 3750kVA
13.8/4.16kV
115 4.75%, XIR =11.4
c1
1200kVA BUS106
Uan)
110 VS SV IREN Ay Transformer
4.16/0.48kV
T104
2000kKVA

4.16/0.48kV
5.75%, X/IR=4.7

BUS107

Cc2
1500kVA

200hp M

1000kVA

@ Motor load
@ Diesel generator

<>>- On Switch

[——] Bus

¢ Load

Diagram of modified Banshee microgrid

ECURENT

Reward

——  with model
—— without model

0 2000 4000 6000 8000 10000 12000
Episode

Reward curve with and without model-based analysis
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Validation in CURENT Hardware Testbed

|
— 7=0.1
— 7 =0.2
— =04
----- trajectory

e
<t

100 - T =0.1
’ =02
E 80 T=04
—~ ---= trajectory
A p
60 :

rter recovery

Generation loss

Generation recovery

7=0.2 |
T=04

1

2

e
o

3
time /s

Generation reduction & recovery

O Inverters can be freely assigned any time constant and respond either slow or fast.
O The proposed physics-informed DRL algorithm is validated under scheduling
reference change and generation reduction and recovery.

2
| 7=0.1
60.1 T=02
o =04
Ny
60.0
0 1 2 3 4 5
time /s
Scheduling reference change
o
ECURENT
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Vision of Future Directions of AlI/DL in Power
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DL for Different Power System Applications

Power transmission system
v Cascading outage screening
v Voltage stability assessment
v Bulk system restoration support

o —

Deep Iearnlng (DL

Power distribution system DL domnates

v Intelligent multi-MGs energy management
v' Resilient multi-MGs defense

v Microgrid PQ control DL+ reinforcement learning
. e (RL) = Deep RL (DRL)
v’ Line outage cause classification

Loads and consumers DRL

AGENT ENVIORENMENT

amter&cnon

v Multi-zone residential HVAC control domingteq
v Robust Load restoration

ECurRENT
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When we apply DL in power, what do we expect to achieve?

Advanced Al/DL methods have been explored in almost everywhere in the field of power systems such as load/RES
forecasting, power system operation and planning, optimal control, etc.

Simplify computation Completely/partly model free Data proces_sing |

* Highly complex/non-convex « Intractable modeling: hard to » Forecasting: automatic data
Issues: hard to solve using model the issue, residential generation with high accuracy
conventional optimization. load behavior . :‘:())?tgefgj[se'gﬂgr:nzgﬁmze good data

: - — . . ision-maki

) Tlme-c_o nsuming calculation: ) F_’rlvacy requirements. no « Unsupervised featSre extraction:
dynamic simulations, two rights to access the model qf d Vs
stage robust optimization. no need for manual data analysis

DDPG RL Agent
——4 Act

" Distribution dential HVAC buildi
Itoad profile ) System Operator Residential HVAC building
d N Information flow
<«—— Energy flow

= . SAﬁAN‘:{,aiTng
- = . gorithm
8 7 ﬂ- | B 0 Fe >
- —|‘—!—Lr|— EI Discriminator
- A 1Y -y e |
Microgrid 1 ﬁ ﬂ.’ T g Microgrid m G(Z) T as
I S i C T g— Generator ¢ — — — - Training loss
ok W Ly & .
Microgrid 2 Microgrid 3
Replace non-convex MG models with DNN Protect customer privacy of the residential side Automatically exact high-dimensional data

features
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Challenge of Current Al: Transfer Gap

O The transfer gap: Are the lab-based Als suitable for real-world power system

conditions?
4 Offline training
<
2
. . eal-worl - Controller
Training/Learning )|the gap >< .............................
TN )
RN
SISy : = RN (R o011 S TR
J N ;: 5
;“i\l‘:’@}?ﬁﬁ\t\\@ - , <) Online
lé{;/;%;“i\\’{'ﬂ>\’ .leﬂcu'ty 0 N O implementation
CSEINIEG,  involve real- & N
SNV S world stuffs
2 | Subscale)
- system
 Data scarcity of abnormal operation conditions —
« Over simplified power grid simulation (environment) Low Fidelity High

Test bed types [1] and options for model-free RL environment

[1] “IEEE Standard for the Testing of Microgrid Controllers,” IEEE 2030.8-2018.
ECurRENT "



Challenge of Current Al Methods: Action Security

O Requirements of reliable on-line actions

ECurRENT

* Security in training/exploration
RL agent needs sufficient exploration of the environment. Sometimes, the
explored actions are harmful for the system.

* Security in action
Model-based controllers can pass the security test through eigenvalue
analysis or the Lyapunov function before implementation, but RL agent cannot.

$

e Efficient training can help
Case to case design benefit the targeted issue/systems.
Enhance the security feature in database and environment.
* Develop specialized hardware-software test bed
With protection schemes that can tolerate random exploration to some degree .
* Integrate domain knowledge
Consider physical operational constraints and stability criteria, and use constrained

RL and safe RL.
Employ physics-constrained and physics-informed neural network.
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Challenge of Current Al : Scalability & Explainability

O The curse of dimensionality O Simplify power system models for Al (physics-informed
Al)

The expansion of state space and action space will result in an
10 Pasons exponential increase in control complexity, thereby increasing the
: difficulty of exploration and training
Solutions:
v" Increase the capability of existing RL models
v Reduce the complexity with domain knowledge (MG topology)

2 Dimentions:
100 Positions
@

. Virtual node
. DG nodes
. Other nodes
SN Reduces the action space
3Dimenton: N\ 97 from exponential to
\‘# \ 7 polynomial.
\i 9
é/
Original DS Topology transformation

Curse of dimensionality

O Physics-informed Al may improve the explainability of Al-based solutions.

L. J- Zhao, F. Li, S. Mukherjee, C. Sticht, "Deep Reinforcement Learning based Model-free On-line Dynamic Multi-Microgrid Formation to
Enhance Resilience," IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 2557-2567, July 2022. >4



Perspective of Future Al Development

O Making Al-based approach more understandable and explainable

W
Deep Learning
> Deep learning
sembles
. ’ > Ensemble learning
g AOG Graphical Models I >Conventlona| ML
SUM ’
The ideal solution should have both high
explainability and high performance.
Models
. Explainable/interpretable Al (XAl)
\9"‘ Explainability Q’.\@

Model explainability vs. model performance for widely used Al techniques [1]

[11 G. Yang, Q. Ye, J. Xia, “Unbox the black-box for the medical explainable Al via multi-modal and multi-centre data fusion: A mini-review,
@DURENT two showcases and beyond”, Information Fusion, vol. 77, pp 29-52, 2022. 55



Al for Power Systems

Advanced Al techniques are tools to help us.
How well they perform largely depends on how we use them.

Current concerns

« Transfer gap v Efficient off-line training Al & power systems
. Action security v Reliable on-line actions Promising further

. Scalability v’ Better understanding development

« Explainability

EcurRENT



PES Activities of ML for Power
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IEEE WG on Machine Learning for Power Systems

https://cmte.ieee.org/pes-mips/

=3 IEEE PES Committee Template X [

< ¢ @ © & hitpsy//cmiteieee.org/pes-mips/ B ~Uw

IEEE.org |  IEEE Xplore Digital Library | IEEE Standards | IEEE Spectrum | More Sites

N D@ 5

IEEE . .

/ IEEE TF on Machine Learning for Power
@PES J

Power & Energy Society® Systems

ABOUT OFFICERS ACTIVITIES

EMAIL LIST

Q $IEEE

The Task Force on Machine Learning for Power Systems (MLPS) is the professional hol
and engineers involved in the application of the latest machine learning techniques for t
planning of power systems. It is a repository of technical and educational materials such
presentations, tutorials and panel discussions. The task force is under the direction of thq

committee.

(_

Officers - IEEE TF on Machine | X g
c @ © @ nttpsy//emteieee.org/pes-mips/officers/ B em w @

T IEEE . .
IEEE TF on Machine Learning for Power
(&PEs 5

Power & Energy Sociely® Systems

Fran Li, Chair

Fran Liis the James W. McConnell Professor in the department of Electrical
Engineering and Computer Science at The University of Tennessee, Knoxville, TN,
USA. He also serves as the Editor-In-Chief of IEEE Open Access Journal of Power
and Energy (OAJPE). Email: ﬂi6@utk.edu.‘

Ross Guttromson, Vice Chair

Ross Guttromson is the Manager of Electric Power Systems Research at Sandia
National Laboratories (SNL), Albuquerque, NM, USA. Email: rguttro@sandia.gov.

Di Shi, Secretary

Di Shi is the Department Head of Al & System Analytics at Global Energy

o b oot Blowsh 8 : Cinusia L A _Coaail

LN D @® =’='E

Q  4IEEE

[ Email List - [EEE TF on Machin- X [iRd

&«

c @ © & httpsy/femtedieee.org/pes-mips/email-list/ B s @7 o e &

VEEEorg | IEEE Xplore Digital Library | IEEEStandards | IEEESpectrum | More Sites
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T IEEE . .
/ IEEE TF on Machine Learning for Power
@Pes ;

Power & Energy Society® Systems

ABOUT OFFICERS ACTIVITIES RESOURCES

How to subscribe to our email list

Q < IEEE

Step 1: Send a message to listserv@listserv.ieee.org from your professional email. Type the following in the first
line of the body of your message: Subscribe PES-MLPS@LISTSERV.IEEE.ORG Your-Real-Name Your-Affiliation.

Step 2: You will receive a confirmation email. Click on the given link to

Step 3: Wait for us to add you to the list.

hat fail to provide professional emails, real names,

t have an ava

those no ail or encounter a

Haoyuan hsun19@vols.utk.edu for a manual subsc

ription.

confirm.

affiliation information will be rejected. For

em, please send your information to
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Ongoing & Past Activities

 |EEE Power and Energy Magazine special issue on Data
Analytics and Al (May-June issue), Co-guest editor: Fran
Li

N(

IEEE Workshop on Machine Learning for Power Systems
(November 17t 2021): 200+ online participants, Slides
and videos avallable at PES Resource Centers.
\___Organized by Fran Li

 |EEE PES GM22 Supersession (8 speakers)
 |EEE PES GM22 Panel Session (6 speakers)
 |EEE PES GM21 Panel Session (5 speakers)

 |EEE PES GM20 Panel Sessions, two sessions (10

speakers in total)
ECURENT

Workshop
on Machine
Learning for
Power Systems

CLICK HERETO ACCESS

(1]

THEWEBINAR VIDEO

2021 |EEE Workshop on Machine
Learning for Power Systems (Video)

Society Members: Free
IEEE Members: $11.00
Non-members: $15.00

Machine Learning (ML) has been one of the
emerging areas in the community of electric
power systems in recent years. ...More

17 Nov 2021 E
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What’s new in the past a few months in Al?
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Large language model (LLM) and beyond LLM

Google

=" Microsoft

00 Meta

Al is changing the world.

ChatGPT

Midjourney
Gen5 model

Visual ChatGPT

ECurRENT

GPT4

LLaMA

Auto GPT

Microsoft Copilot
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Key features

» Large scale model
Huge amount of data
Deep architecture
High computing power
Human-like language understanding.

» Multi-modal input and output

Process and learn from multiple modalities
Feature fusion

Cross-modal retrieval

Contextual understanding.

Open question:
How will the large-scale Al
model change the power
community?

» Automatic learning

Continuous learning
Automatic feedback loops

Reinforcement/Transfer learning .
‘Jd

Online learning.

ECurRENT .,
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Thank you!

Q&A
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Machine Learning Based Stability Assessment

° ObjeCtive Generation dispatch, transmission
o Fast screening of the system stability fopology cats
(angle, frequency and small-signal Massive simulations to
stability) at dispatch planning stage 1. Model simulation | @i anale,an
y p p g g : (Frequency, angle, and
lI-signal stability)
+ Challenge —
J !

o Save time to run full dynamic modeling, re.iure extraction | EXiract features relevant to system

stability metrics

simulations both near real time & offline l
o Non-linear correlation of stability Construct training dataset based on
. . . . extracted features
margins with operation variables 3. Machine learning |
(dispatch) Train and validate machine learning
models
Approach |

o Use machine learning to obtain stability 4 appiication
margin based on simulations covering
15 min or hourly dispatch. Framework of Al-based system stability predictiog7

U.S. Department Of Energy |

Predict system stability



Background - Transient Stability Metrics Used

* Angle stability

o Rotor angle stabllity refers to the ability of the synchronous machine of an
iInterconnected power system to keep synchronism after being subjected to a
disturbances. The maximum allowable value of the fault-clearing time for the system
to remain stable are known as critical clearing time (CCT). A larger CCT value
generally indicates higher angle stability margin.

* Frequency stability

o Frequency stability refers to the ability of a power system to maintain a steady
frequency following a severe system upset resulting in an imbalance between
generation and load. After the largest generation loss contingency, the frequency
nadir should be maintained above a certain level, for example, the under-frequency-
load-shedding threshold. A higher frequency nadir generally indicates better
frequency stability.

« Small-signal stability

o Small-signal stability is about the stability of the power system when subjgect tq spall
disturbances. A larger damping ratio is more stable. eermotooies orries | 68



Machine-learning-based Angle and Frequency Stability Assessment

CCT prediction

Actual vs Predicted CCT
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Frequency nadir prediction
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Actual vs Predicted Frequency Nadir
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Machine-learning-based Small-signal Stability Assessment
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Oscillation damping and oscillation frequency prediction

Damping ratio
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MW

240 bus reduced WECC system results

. Frequency stability (frequency nadir) ..
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Predicted CCT(s)

240 bus reduced WECC system results

« Angle stability (CCT) prediction

- Actual CCT

o Mean absolute error: 0.006s 0220 R B A YAl
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Angle Stability Prediction Considering Topology Changes

0.35
03} a
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0.05 fu, Actual ]
v Machine learning prediction
. . 0 - 1 L L 1
N-1 line outages in the 18-bus system 0 50 100 150 200 250 300
Each line represents one N-1 scenario Power disptach scenarios

Al-based CCT prediction considering topology change
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ML Accuracy and computation time comparison

« Using the ML trained models, stability assessment time decreases
significantly
* Minimal compromise on accuracy.

Accuracy of machine learning based stability assessment

Estimation accuracy Time for stability assessment (86
dispatch scenarios

Random forests Neural network Time domain  Machine learning

Stability

simulation based
Frequency 98.30% 99.72% ~1 h ~0.18 ms (with
Angle 08.44% 09 29%, ~1eh trained model)

Small-Signal 98.61% 98.59% ~1h

SOLAR ENERGY
TECHNOLOGIES OFFICE 74
U.S. Department Of Energy



Al Agent for Frequency Stability Assessment: Results on Full WECC
System

* Predicted frequency nadir using the developed Al agent

59.77 _ Neural Network: Trained ML Testing forFreqNadir . Random Forest: Trained ML Testing forFreqNadir
T T T T T T
59.76 - |
N
I 59.75 ]
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E
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Pz ' P |
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%#:, X ML Prediction 2 ML Traln'lng |
ML Testing ML Pre@ctlon
59.71 : 1 : ! ! I 1 l 1 | ML Tesltlng |
20 40 60 80 100 120 71
Dispatches 20 40 60 80 100 120

Dispatches

SOLAR ENERGY
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Topology Change on WECC Systems — Trip Tie-lines

WECC Topology Change - Trip 1 Tie-line Frequency Nadir 5 80 WECC Topology Change - Trip 2 Tie-lines Frequency Nadir 59,80 WECC Topology Change - Trip 3 Tie-lines Frequency Nadir

* Trip tie-lines did not lose any generators

 Total generation MW no obvious change resulted in no
obvious change Iin frequency nadir

SOLAR ENERGY
TECHNOLOGIES OFFICE 76
U.S. Department Of Energy



Topology Change on WECC Systems — Trip Generators

WECC Topology Change - Trip 1 Generator Frequency Nadir 5 80 WECC Topology Change - Trip 2 Generators Frequency Nadir 59,80 WECC Topology Change - Trip 3 Generators Frequency Nadir

T T T T T 59.75 T T T T T T T 59.75 —= T T
40 60 80 100 120 o 20 40 60 80 100 120 o 20 40
Cases Cases Cases

* Trip generators caused total generation MW decrease

* Lower frequency nadir were observed as more generators
were lost

SOLAR ENERGY
TECHNOLOGIES OFFICE 17
U.S. Department Of Energy



Al-based MW Imbalance Prediction after WECC-1 RAS Action

Study system: The reduced WECC system model |
O 8,000+ power flow scenarios |S|aﬂd #1

0 Developed by NREL, MSU.
WECC-1 RAS (Remedial Action Scheme)

O Monitor 500kV transmission system within California,
Origen, and Washington, etc.

O When certain criterion is met, e.g., loss three important
tie-lines, it leads to a controlled separation of the WECC
system into two islands.

Al-based method Is used to suggest min MW
adjustment Iin the two Islands to keep
frequency within range.

Island #2

ECURENT N



Al-based MW Imbalance Prediction after WECC-1 RAS Action

e Tr

aining dataset generation:

Q

Q

Create the separation for each of the 8000+
dispatch for one year.

Start increasing MW in one area and
decreasing MW in the other area based on
the tie lines flow

lteratively tune the MW amount according to
the frequency requirement

Obtain the optimal load increase amount and
load decrease amount to maintain within
59.5Hz and 60.5Hz range.

Note here load increase is actually generation

drop.

ECURENT
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Al-based MW Imbalance Prediction after WECC-1 RAS Action

* Neural network to predict optimal MW increase or decrease in two
Islanded systems after RAS to maintain frequency (= 59.5Hz one
area and = 60.5Hz in the other area).

* Training dataset (68%) and test data set (20%)

Total generation (1)
Total load power (1)
Total system inertia (1) Neural Network Gen decrease (1)

Generator power output (146) ‘ (6 hidden layers ‘ Load Decrease (1)
Load power (139) TensorFlow Library)

Generator’s inertia contribution (146)

Input and output of Neural Network
ECURENT .



Al-based MW Imbalance Prediction after WECC-1 RAS Action

* Testing results (1350 samples) of the trained model
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Al-based MW Imbalance Prediction after WECC-1 RAS Action

 Daily results confirm that the model can predict the gen decrease and
load decrease amount accurately.
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Next Step

 Pilot test at utilities and 1SOs

Looking for partner utilities to start a pilot implementation
project in 2021. DOE will provide lab support under the
Virtual Operator Assistance Program (VOA). Contact us if
Interested.

ECURENT
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