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Early Years

Artificial Intelligence

A field "of computer science concerned with designing 

intelligent computer systems, that is, systems that exhibit 

characteristics we associate with intelligence in human 

behavior - understanding language, learning, reasoning, 

solving problems, and so on. [Feigenbaum, Stanford]’’

➔ Much of the development in the 1960s was on more 

general intelligence. This was found to be 

extremely difficult and led Feigenbaum to propose 

more specialized systems.
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Knowledge-Based Systems

• The general AI approach eventually 

morphed into the concept of 

knowledge-based systems and more 

specifically Expert Systems

o MYCIN – Diagnostic system for blood 

disease infection

o SID – Design aid for the VAX 9000 

system

➔ These were very specialized systems 

with a general “engine” 
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• Earliest applications in nuclear power and security assessment

(1970s)

• Numerous projects by mid 1980s

• Example application areas

– Alarm processing

– Diagnostics

– Load forecasting

– Operations

– Security assessment

Historical Development in Power Systems
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Knowledge Representation

• How to represent knowledge of some specific 

domain in an

efficient and clear manner?

o Graphs/trees – example diagnostic trees

o Rules – typically if-then statements

o Objects

➔ Emphasis on relationships between data, not 

data types and not on algorithms
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Knowledge Representation

Rules

IF-THEN Structures

• Example:

IF a feeder can be restored from a tie switch

AND there is sufficient capacity on that feeder

THEN restore from that tie switch

➔ Raises the question of then how are rules applied
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Solution Mechanisms

Inference

Need generic approach to applying rules but must have

• Appropriate context

o Example: Load priority rules when system overloaded

• Appropriate sequence

o Example: Restoration after fault isolation

➔ This information must be encoded in the rules so one 

can use a general logical approach
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Solution Mechanism

Rule-chaining – forward chaining (data-driven)

Conditions ➔ conclusions

• Example: Restoration

Rule A: IF outage THEN search for restoration path

Rule B: IF searching for restoration path

THEN look for feeders with excess capacity

• Inference process

Outage ➔Apply rule A

After applying rule A ➔Apply rule B
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Solution Mechansims

Rule-chaining – backward-chaining (goal driven)

Conclusions ==> conditions

• Example: Transformer diagnostics

Rule A: IF a thermal fault in transformer

THEN [H2] will be elevated in oil

• Inference process

Detect elevated [H2] ➔ thermal fault
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Solution Mechanisms

Rule-chaining – design criteria

Search from fewer to greater possibilities

• Example: Remedial control action

IF outage A

THEN control action C

• Assume number of possible outages far fewer than possible 

control actions then you want to use Forward-chaining
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Power flow equation

Voltage dependent loads

Load voltage constraints

Transmission System
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VCES – Voltage Control Expert System
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• Shunt capacitors

• Transformer tap changers

• Generator voltages

Q Q Qi i i

min max 

V V Vi i i

min max
 

t t ti i i

min max 

Controls and Constraints
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• It is most efficient to apply VAR injections locally

• Position of local tap changer can be raised (lowered) to 

correct low (high) voltage

– May cause other voltages to drop

• Generator bus voltages can be raised (lowered) to solve 

the low (high) load voltage problems

Heuristic (empirical) rules
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Assume 

1) Load voltages near 1.0 p.u.

2) Transformer tap settings near 1.0

3) Line angles near 0

4) Lines lossless

If reactive compensation Q is applied at bus i

then

Transmission System

 V Vi j

Justication for a Rule 1
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Assume 1) -4) hold

If the tap position t is raised at bus i  then

Transmission System

 V Vi j 0 0

Justication for a Rule 2
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Assume 1) -4) hold

If the generator voltage is raised at bus i  then

Transmission System

V j 0

Justication for a Rule 3
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Compare to using Optimization (Linear Program)
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• VCES solves scenarios in a single iteration while LP requires 

multiple iterations

• For more severe problems, VCES uses fewer controls

• LP has problems with small unrealistic control adjustments and 

other hard to represent constraints

• VCES approach is generally faster

• VCES tends to provide a better voltage profile

• VCES performance improvement greater with severe problems

• VCES can explain performance

➔ But VCES doesn’t guarantee performance

Comparison between LP and VCES

18



Uncertainty/Subjectivity in Knowledge

Almost all expert systems have to deal with some more of 

uncertainty that rarely fits standard probabilistic approaches

• Representations

o Subjective probability

o Certainty factors (MYCIN)

o Fuzzy logic (Zadeh)

• Membership functions represent use of generic terms, e.g., small, medium 

and large
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Limitations of Knowledge-Based Systems

• Incremental improvements (adding new rules) may be difficult.

• Development often slowed by the process of extracting 

knowledge from human experts.

• Computational efficiency concerns for systems with 1000s of 

rules. Few expert systems can adapt logic to time constraints.

• It may be difficult to evaluate performance evaluation

• User acceptance of a new technology may be slow, unless 

coupled with explanation systems

➔ AI research (most) has moved on to learning from data
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• Artificial intelligence

• Backward-chaining/goal-

oriented

• Certainty factors

• Expert systems

• Forward-chaining/data-

driven

• Fuzzy sets and logic

• Heuristics

• Inference engine

• Intelligent systems

• Knowledge-based

• Knowledge representation

• Logic programming

• Model-based reasoning

• Objects/frames

• Rule-based

• Subjective probability

Terminology
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Deep Learning Applications in Power Systems

2023 CURENT Industry Conference

April 2023

Fangxing Fran Li, Ph.D., P.E.

James McConnell Professor, The University of Tennessee - Knoxville

Email: fli6@utk.edu

mailto:fli6@utk.edu


Overview of Artificial Intelligence, Machine 

Learning, and Deep Learning
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Artificial Intelligence & Machine Learning

• Artificial Intelligence (AI) refers to the creation of intelligent machines that can 

perform tasks that typically require human intelligence, such as recognizing 

speech, making decisions, and understanding natural language. Main areas: 

o Expert systems (rule-based, knowledge-based)

o Machine learning

• Machine Learning (ML):

o Supervised learning (labelled data)

o Unsupervised learning (data not labelled, for clustering)

o Reinforcement learning

o Semi-supervised learning
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Deep Learning

• Deep Learning (DL): typically involves deep neural networks (DNN) or similar 
architecture with multiple layers in the network.

• Deep learning structures: 
o Deep neural networks

o Convolutional neural networks

o Deep belief networks

o Recurrent neural networks 

o Long short-term memory

o Graph neural networks

o Transformer

o …  
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A typical DNN with multiple hidden layers.



Artificial Intelligence, Machine Learning, & Deep Learning

26
https://en.wikipedia.org/wiki/Deep_learning

Expert systems 

(Rule bases,

Knowledge bases)

Supervised learning

Unsupervised learning

Reinforcement learning

DNN, CNN, DBN, 

RNN, LSTM, GNN, 

GAN, Transformer, etc.



Deep Reinforcement Learning

• Reinforcement Learning + Deep Neural Network ➔ DRL

ActionState

Reward

RL: Essentially a trial-and-error process

Agent

Environment

State

Policy π(s,a)

Action

DNN

Agent
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Mythology of Reinforcement Learning

❑ DQN: deep Q-learning

❑ DDQN: Dual deep Q-learning

❑ Rainbow DQN: ‘Rainbow’ deep Q-learning

❑ TRPO: Trust region policy optimization

❑ PPO: Proximal policy optimization

❑ PPG: Phasic policy gradient

❑ A2C: Advantage Actor-Critic 

❑ A3C: Asynchronous Advantage Actor-Critic 

❑ SAC: Soft Actor-Critic

❑ DPG: Deterministic policy gradient (DPG) 

❑ DDPG: Deep Deterministic Policy Gradient

❑ TD3: Twin Delayed Deep Deterministic policy

gradient (TD3) 

➢ Value: value of state-action pair (s, a)

➢ Policy: map state to action

• Stochastic policy: probabilistic

distribution of action

• Deterministic policy: deterministic action

DRL(Year)

Policy-gradientValue-based

TRPO (2015)

PPO (2017)

PPG (2020)

Q-learning (1993)

DQN (2014)

A2C/A3C (2016)

SAC (2018)

DDPG (2016)

TD3 (2018)

DDQN (2015)

Rainbow DQN (2017)

StochasticPolicy DeterministicPolicy

DPG (2014)
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AlphaGo - An Epic Achievement of Deep Learning

➢ Go, also known as Weiqi or Baduk

• A strategic board game originated in China over 2500 years ago

• Broadly considered by mathematicians and computer scientists as the 

most complex board game and the best testbed for artificial intelligence

➢ Big news in AI in 2016

• AlphaGo (by Google DeepMind) beat World Champions in 

2016, at least 30 years earlier than expected.

• Based on deep reinforcement learning

• A featured cover article was published in Nature in 2016 by 

the AlphaGo team

➢ Further improved: 

• AlphaGo Zero (2017), AlphaZero (2018), and MuZero (2019)
D. Silver, A. Huang, C. J. Maddison, A. Guez,

L. Sifre, G. Van Den Driessche, et al.

“Mastering the game of Go with deep neural

networks and tree search,” Nature, vol. 529,

no. 7587, pp. 484-489, 2016.
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Deep Learning: Motivation and Development

• Motivation and Development

o The core idea behind deep learning: successive layers of representation.

o Examples of representation: 1) image in its RGB matrix; 2) figure in its binary code.

o The term “deep” refers to the multiple layers that are connected end to end to learn the data

representations → automates the feature extraction.

o The idea of multi-layer representation is based on the assumption that the data in the real-world can all be

regarded as composition of features.

o Current research works have explained how multiple-layer network in a hierarchical structure captures local

features and gradually forms the high-level concept.

o It is combined with reinforcement learning to form deep reinforcement learning (the key structure of

AlphaGo).

• Why is “deep” so powerful?
o Many more hidden layers allowing NN to learn more complex patterns with more complex representations.

o Enabled by new hardware – GPU, TPU, etc.

o Better software, better data management, etc. 

• Majority of recent AI applications in power are based on deep learning.
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Deep Learning Application in Power

- Deep CNN-based Contingency Screening with Uncertain Scenarios
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Multi-scenario Security Screening 

• The increasing penetration of renewable energy makes the traditional N-1 contingency

screening highly challenging when a large number of uncertain scenarios need to be combined

with security screening.

• The combination can be a very complicated search problem, e.g., in the scale of NS where N is the

number of (uncorrelated) wind plants and s is the number of scenarios.

• A data-driven method, similar to image-processing technique using deep convolutional neural

network (Deep CNN) method, is proposed for accelerating multi-scenario N-1 contingency

screening.
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A Brief on Deep Convolutional Neural Network

original image RGB parameter feature 
map 

input

filter

feature extraction

 

x

y

identification

Daisy: 1

Rose: 0

 

Lily: 0

output

Convolution operation:

1 1

'( , ) ( , ) ( , )
c c

u v

I i j I u v u v b
= =

= +

• Deep convolutional neural network (deep CNN): an artificial neural network with multiple

hidden layers.

• Strong automatic feature extraction ability in possessing data with grid-like structure, i.e.,

image data.

• With a hierarchical structure, it mimics the visual cortex of human.
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Analogy to Image Classification

Power system 

topology

Bus admittance 

matrices and 

power injection 

matrices

Original image Pixel matrices

Similarity between image processing data and power system raw data: grid-like

structure and sparsity.
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Mapping Power System Data to Deep CNN Input
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Deep CNN for Security Screening
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Design of Deep CNN Structure
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• Two convolutional layers, three fully-connected layers

• Input: B; P; Q (3×n matrix)

• Output: voltage (2×n matrix); system security status (1×3 vector)
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• A security index is needed for evaluating system operation status based on power flow

results. Here we use:
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Case Studies (1)

• Tested on the IEEE 9, 30, 57, 118, and 300-bus systems, WECC 181-bus system,

and European 1354-bus system

• Considered load uncertainty, renewable generation variation, and N-1 contingency in 

each ACPF case

• Load forecast error ~U(0.8,1.2), Wind speed forecast error ~N(0,0.05^2)

Case
No. of samples Errors Training 

time(s)

Classification

AccuracyTraining Test  v

9 3292 1412 6.1e-3 7.2e-4 11.42 97.24%

30 4262 1066 1.5e-3 5.4e-4 23.06 96.25%

57 3360 1440 4.9e-3 1.6e-3 31.59 99.24%

118 3027 1298 7.5e-3 2.9e-4 57.88 100.00%

181(WECC) 2530 1085 5.7e-2 3.8e-3 65.04 97.70%

300 3445 1477 6.9e-2 2.3e-3 148.91 99.05%

1354 (Eu.) 3981 1707 1.1e-2 1.9e-3 1548.94 96.84%

AC POWER FLOW RESULTS OF DEEP CNN 
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Case Studies (2)

TEST TIME COMPARISON & ACCELERATION

• Software: TensorFlow

• Hardware: Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory

and 1.582 GHz core clock

Case
Test 

size

Test time (s)

(deep CNN)

Test time (s)

(model-based)

Acceleration

ratio

9 1412 0.017 3.500 206

30 1066 0.016 3.303 206

57 1440 0.018 4.323 240

118 1298 0.021 4.905 234

181 (WECC) 1085 0.025 4.655 186

300 1477 0.044 10.15 231

1354 (Eu.) 1707 0.264 34.13 129
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• The results on 1354-bus system is not available for ANN due to out-of-memory

(OOM) issue.

• Deep CNN is more efficient in feature extraction and computation.

Case Studies (3)

TEST TIME COMPARISON OF DCNN VS. ANN

Case
Errors (ANN)

Errors

(deep CNN)

Classification 

Accuracy

(ANN)

Classification 

Accuracy

(deep CNN) v  v

9 2.0e-2 2.3e-3 6.1e-3 7.2e-4 91.64% 97.24%

30 9.0e-3 2.4e-3 1.5e-3 5.4e-4 87.43% 96.25%

57 2.7e-2 9.0e-3 4.9e-3 1.6e-3 92.43% 99.24%

118 2.7e-2 9.0e-4 7.5e-3 2.9e-4 98.54% 100.00%

181 1.8e-1 1.3e-2 5.7e-2 3.8e-3 75.94% 97.70%

300 2.0e-1 5.7e-3 6.9e-2 2.3e-3 78.00% 99.05%

1354 -- -- 1.1e-2 1.9e-3 -- 96.84%
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Deep CNN-based Contingency Screening with Uncertain Scenarios

➢ Summary

• A power system can be modeled with matrices similar to the models of images such that some

AI-based image processing technique can be utilized.

• The deep CNN is constructed as a classifier to evaluate system security status based on power

system raw data.

• Compared with the conventional model-based method, the proposed deep CNN has high

computational efficiency (achieving over 100x speedup), while maintaining considerable

classification accuracy (98.05% accuracy in average), which can be a promising tool for future

real-time applications.

42

Y. Du, F. Li, J. Li, T. Zheng, “Achieving 100x Acceleration for N-1 Contingency Screening with Uncertain Scenarios 

using Deep Convolutional Neural Network,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3303-3305, 

July 2019.
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Extension: Deep CNN for Cascading Failure Assessment

43

• Two convolutional layers and five fully-

connected layers

• Loss function: Mean Square Error
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Y. Du, F. Li, et al, "Fast Cascading Outage Screening based on Deep Convolutional Neural Network and Depth-First 

Search," IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2704-2715, July 2020.

Case
Training

time(s)

Test time (s)

(deep CNN)

Test time (s)

(model-based)

Acceleration

ratio

57-bus 906 0.16 225.85 1,412

1354-bus 24,692 5.7 8,185 1,436

• DCNN is combined with 

Depth-First Search



44

Deep Learning Application in Power: 

- Physics-informed DRL for Inverter PQ Control in Microgrid 



Battery Storage

Solar PV and Wind DERs Malls

House

HospitalDiesel Generators

Geothermal 

Power

Microgrid Operation 

and Control Center

Background

Key Idea: In the event of a disturbance, keep the actual response 
following the desired trajectory by adaptively adjusting the control 
gains [1].

Utility 

SubstationPower Distribution

Grid

①: Disturbance

②Microgrid Response

Li, H., Li, F., Xu, Y., Rizy, D.T. and Kueck, J.D., “Adaptive voltage control with distributed energy resources: 

Algorithm, theoretical analysis, simulation, and field test verification,” IEEE Transactions on Power 

Systems, 25(3), pp.1638-1647.
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Physics-informed DRL for Microgrid Control

Diagram of implementing model-free reinforcement learning in microgrid PQ control 

❑ Model-based analysis

reduce learning 
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Test Microgrid and Training Results

Diagram of modified Banshee microgrid

Reward curve with and without model-based analysis
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1000kVA

BUS107

M

200hp

C101

1800ft

1-#500

C103

1000ft

1-4/0

F1G

BUS103

4000kVA

Diesel

500kW

BESS
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  T107

5000kVA

13.8/0.48kV

5%, X/R =5.44

2500kVA

PV
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  T108

2500kVA

13.8/0.48kV

5.56%, X/R =5.42

M Motor load

Diesel generator

Transformer

On Switch

Bus

Load
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Validation in CURENT Hardware Testbed

❑ Inverters can be freely assigned any time constant and respond either slow or fast.

❑ The proposed physics-informed DRL algorithm is validated under scheduling 

reference change and generation reduction and recovery.

Scheduling reference change Generation reduction & recovery
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Vision of Future Directions of AI/DL in Power
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DL for Different Power System Applications

50

Power transmission system
✓ Cascading outage screening

✓ Voltage stability assessment

✓ Bulk system restoration support

Power distribution system

✓ Intelligent multi-MGs energy management

✓ Resilient multi-MGs defense

✓ Microgrid PQ control

✓ Line outage cause classification

Loads and consumers
✓ Multi-zone residential HVAC control

✓ Robust Load restoration

DL+ reinforcement learning 

(RL) = Deep RL (DRL)

DRL 

dominates

Deep learning (DL)

DL dominates



When we apply DL in power, what do we expect to achieve?

51

Simplify computation

• Highly complex/non-convex 

issues: hard to solve using 

conventional optimization. 

• Time-consuming calculation: 

dynamic simulations, two 

stage robust optimization.

Completely/partly model free

• Intractable modeling: hard to 

model the issue, residential 

load behavior.

• Privacy requirements: no 

rights to access the model  

Data processing

• Forecasting: automatic data 

generation with high accuracy

• Data filtering: organize good data 

for decision-making 

• Unsupervised feature extraction: 

no need for manual data analysis

Advanced AI/DL methods have been explored in almost everywhere in the field of power systems such as load/RES 
forecasting, power system operation and planning, optimal control, etc.

Replace non-convex MG models with DNN Protect customer privacy of the residential side Automatically exact high-dimensional data 
features



Challenge of Current AI: Transfer Gap

52

 The transfer gap: Are the lab-based AIs suitable for real-world power system 
conditions? 

Training/Learning
Real-world application

the gap

C
o

v
e
r
a
g

e

Fidelity

H
ig

h
L

o
w

Low High

Simulation Controller
HIL

Power
HIL

Subscale
system

Full
system

Offline training

Online 

implementation

Test bed types [1] and options for model-free RL environment 

Difficulty to 

involve real-

world stuffs

• Data scarcity of abnormal operation conditions 

• Over simplified power grid simulation (environment)

[1] “IEEE Standard for the Testing of Microgrid Controllers,” IEEE 2030.8-2018. 



Challenge of Current AI Methods: Action Security

53

• Security in training/exploration 
RL agent needs sufficient exploration of the environment. Sometimes, the 

explored actions are harmful for the system.

• Security in action
Model-based controllers can pass the security test through eigenvalue 

analysis or the Lyapunov function before implementation, but RL agent cannot.

• Efficient training can help
Case to case design benefit the targeted issue/systems. 
Enhance the security feature in database and environment. 

• Develop specialized hardware-software test bed 
With protection schemes that can tolerate random exploration to some degree .

• Integrate domain knowledge 
Consider physical operational constraints and stability criteria, and use constrained
RL and safe RL.
Employ physics-constrained and physics-informed neural network.

 Requirements of reliable on-line actions 



Challenge of Current AI : Scalability & Explainability
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Reduces the action space 
from exponential to 
polynomial.

 Simplify power system models for AI (physics-informed 

AI)

• The expansion of state space and action space will result in an 

exponential increase in control complexity, thereby increasing the 

difficulty of exploration and training 

• Solutions: 

✓ Increase the capability of existing RL models

✓ Reduce the complexity with domain knowledge (MG topology)

Curse of dimensionality

J. Zhao, F. Li, S. Mukherjee, C. Sticht, "Deep Reinforcement Learning based Model-free On-line Dynamic Multi-Microgrid Formation to 

Enhance Resilience," IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 2557-2567, July 2022.

 The curse of dimensionality

 Physics-informed AI may improve the explainability of AI-based solutions.



Perspective of Future AI Development
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Ensemble learning

Deep learning

Model explainability vs. model performance for widely used AI techniques [1]

[1] G. Yang, Q. Ye, J. Xia, “Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, 

two showcases and beyond”, Information Fusion, vol. 77, pp 29-52, 2022.

The ideal solution should have both high 

explainability and high performance. 

Explainable/interpretable AI (XAI)

 Making AI-based approach more understandable and explainable 

Conventional ML



AI for Power Systems
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Advanced AI techniques are tools to help us. 

How well they perform largely depends on how we use them.

Current concerns

• Transfer gap

• Action security

• Scalability

• Explainability

AI & power systems

Promising further 

development

✓ Efficient off-line training

✓ Reliable on-line actions

✓ Better understanding



PES Activities of ML for Power
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IEEE WG on Machine Learning for Power Systems
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https://cmte.ieee.org/pes-mlps/ 



Ongoing & Past Activities

• IEEE Power and Energy Magazine special issue on Data 

Analytics and AI (May-June issue), Co-guest editor: Fran 

Li 

• IEEE Workshop on Machine Learning for Power Systems 

(November 17th, 2021): 200+ online participants, Slides 

and videos available at PES Resource Centers. 

Organized by Fran Li

• IEEE PES GM22 Supersession (8 speakers)

• IEEE PES GM22 Panel Session (6 speakers)

• IEEE PES GM21 Panel Session  (5 speakers)

• IEEE PES GM20 Panel Sessions, two sessions (10 

speakers in total)
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What’s new in the past a few months in AI?
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Large language model (LLM) and beyond LLM
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ChatGPT

LLaMA

Visual ChatGPT

GPT4

Midjourney
Gen5 model

Microsoft Copilot

Auto GPT

……

……

AI is changing the world.



Key features
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➢ Large scale model

➢ Multi-modal input and output

➢ Automatic learning

Open question:
How will the large-scale AI 

model change the power 

community?

Huge amount of data   
Deep architecture
High computing power
Human-like language understanding.

Process and learn from multiple modalities
Feature fusion
Cross-modal retrieval
Contextual understanding.

Continuous learning
Automatic feedback loops
Reinforcement/Transfer learning
Online learning.
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Thank you!

Q&A
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Machine Learning for Fast Stability Screening Using 

Power Dispatch as Inputs

Presented by Yilu Liu 

Work performed by Annie Zhao, Jenny Dong, Cici Jia

University of Tennessee and Oak Ridge National Laboratory

Liu@utk.edu



• Objective

o Fast screening of the system stability        

(angle, frequency and small-signal 

stability) at dispatch planning stage.

• Challenge

o Save time to run full dynamic modeling 

simulations both near real time & offline

o Non-linear correlation of stability 

margins with operation variables 

(dispatch)

o Approach

o Use machine learning to obtain stability 

margin based on simulations covering 

15 min or hourly dispatch.

Machine Learning Based Stability Assessment

Framework of AI-based system stability prediction

Generation dispatch, transmission 

topology data

Massive simulations to 

obtain stability dataset 

(Frequency, angle, and 

small-signal stability)

Predict system stability

2. Feature extraction

3. Machine learning

1. Model simulation

4. Application

Extract features relevant to system 

stability metrics

Construct training dataset based on 

extracted features

Train and validate machine learning 

models
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Background - Transient Stability Metrics Used

• Angle stability

o Rotor angle stability refers to the ability of the synchronous machine of an 

interconnected power system to keep synchronism after being subjected to a 

disturbances. The maximum allowable value of the fault-clearing time for the system 

to remain stable are known as critical clearing time (CCT). A larger CCT value 

generally indicates higher angle stability margin.

• Frequency stability

o Frequency stability refers to the ability of a power system to maintain a steady 

frequency following a severe system upset resulting in an imbalance between 

generation and load. After the largest generation loss contingency, the frequency 

nadir should be maintained above a certain level, for example, the under-frequency-

load-shedding threshold. A higher frequency nadir generally indicates better 

frequency stability. 

• Small-signal stability

o Small-signal stability is about the stability of the power system when subject to small 

disturbances. A larger damping ratio is more stable. 68



Machine-learning-based Angle and Frequency Stability Assessment 

Frequency nadir predictionCCT prediction

69



Machine-learning-based Small-signal Stability Assessment

70

Oscillation damping and oscillation frequency prediction

Damping ratio Frequency



240 bus reduced WECC system results

• Frequency stability (frequency nadir) 

prediction

71

One year (8000+ power flow scenarios) for 240-bus 

reduced WECC system

UFLS
Predict the frequency nadir for the 

largest generation loss event (March 

1)
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240 bus reduced WECC system results

• Angle stability (CCT) prediction

o Mean absolute error: 0.006s

CCT prediction results for 

multiple days

Prediction results of August. 20Prediction results of Jan. 20

Prediction results of Sept. 9

Actual CCT

Predicted CCT

Prediction results of August. 5
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Angle Stability Prediction Considering Topology Changes

N-1 line outages in the 18-bus system

Each line represents one N-1 scenario
AI-based CCT prediction considering topology change

73



ML Accuracy and computation time comparison

• Using the ML trained models, stability assessment time decreases 

significantly 

• Minimal compromise on accuracy. 

Comparison of Simulation time using simulation and machine learning

Stability

Estimation accuracy Time for stability assessment (86 

dispatch scenarios)

Random forests Neural network Time domain 

simulation

Machine learning 

based

Frequency 98.30% 99.72% ~1 h ~0.18 ms (with 
trained model)

Angle 98.44% 99.29% ~16 h

Small-Signal 98.61% 98.59% ~1 h

Accuracy of machine learning based stability assessment
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AI Agent for Frequency Stability Assessment: Results on Full WECC 

System

• Predicted frequency nadir using the developed AI agent
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Topology Change on WECC Systems – Trip Tie-lines

• Trip tie-lines did not lose any generators

• Total generation MW no obvious change resulted in no 

obvious change in frequency nadir 
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Topology Change on WECC Systems – Trip Generators

• Trip generators caused total generation MW decrease

• Lower frequency nadir were observed as more generators 

were lost
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AI-based MW Imbalance Prediction after WECC-1 RAS Action

• Study system: The reduced WECC system model 

❑ 8,000+ power flow scenarios

❑ Developed by NREL, MSU.

• WECC-1 RAS (Remedial Action Scheme)

❑ Monitor 500kV transmission system within California, 

Origen, and Washington, etc. 

❑ When certain criterion is met, e.g., loss three important 

tie-lines, it leads to a controlled separation of the WECC 

system into two islands. 

• AI-based method is used to suggest min MW

adjustment in the two islands to keep

frequency within range.

Island #1

Island #2
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• Training dataset generation:

❑ Create the separation for each of the 8000+ 
dispatch for one year.

❑ Start increasing MW in one area and 
decreasing MW in the other area based on 
the tie lines flow

❑ Iteratively tune the MW amount according to 
the frequency requirement

❑ Obtain the optimal load increase amount and 
load decrease amount to maintain within 
59.5Hz and 60.5Hz range.

Note here load increase is actually generation 
drop.

AI-based MW Imbalance Prediction after WECC-1 RAS Action
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• Neural network to predict optimal MW increase or decrease in two 

islanded systems after RAS to maintain frequency (= 59.5Hz one 

area and = 60.5Hz in the other area). 

• Training dataset (68%) and test data set (20%)

Neural Network

(6 hidden layers

TensorFlow Library)

Total generation (1)

Total load power (1)

Total system inertia (1)

Generator power output (146)

Load power (139)

Generator’s inertia contribution (146)

Gen decrease (1)

Load Decrease (1)

Input and output of Neural Network

AI-based MW Imbalance Prediction after WECC-1 RAS Action
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MAE (Mean Absolute Error) RMSE (Root of Mean Squared Error)

Load Increase 58.765 MW 90.900 MW

Load Decrease 99.856 MW 146.839 MW

• Testing results (1350 samples) of the trained model

Load 

Increase

Load 

Decrease

AI-based MW Imbalance Prediction after WECC-1 RAS Action
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Apr. 6th May 27th

Gen 

decrease

Load 

Decrease

• Daily results confirm that the model can predict the gen decrease and 

load decrease amount accurately.

Oct 5th

AI-based MW Imbalance Prediction after WECC-1 RAS Action

82



Next Step

• Pilot test at utilities and ISOs

Looking for partner utilities to start a pilot implementation 

project in 2021. DOE will provide lab support under the 

Virtual Operator Assistance Program (VOA). Contact us if 

interested.
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