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Abstract—Transient stability is one of the critical aspects of 
power system stability assessment. The increasing integration of 
inverter-based resources and the retirement of conventional 
synchronous generators result in the decreasing system inertia 
and growing complexity of system operating conditions. Using a 
few selected typical operating conditions cannot guarantee 
system transient stability in all operating conditions, and the 
time-domain simulation of all operating conditions requires 
tremendous time and is often infeasible. This paper proposes a 
more efficient transient stability assessment method based on 
deep learning. The binary search method is used to determine 
the critical clearing time (CCT) in creating training databased 
by time-domain simulation. This method is fast and accurate 
with 1 ms resolution. The buses whose CCTs are lower than 200 
ms are considered critical buses. Buses close to each other are 
grouped based on their mutual admittance matrix to reduce the 
search space of the critical buses. This paper also proposes the 
generator feature normalization based on the physical model. 
Case study on the reduced 240-bus WECC system model 
demonstrates that the proposed method can predict CCT 
accurately and efficiently. 

Index Terms—Transient stability assessment, machine learning, 
deep learning, critical clearing time.  

I. INTRODUCTION 

Transient stability is a critical aspect of power system 
stability, which refers to the ability of an AC power system to 
maintain its synchronism after a large disturbance. In current 
industry practices, transient stability is typically evaluated by 
time-domain simulation of selected representative operating 
scenarios, e.g., summer peak, winter peak, and spring light. 
Two direct methods are also used to assess power system 
transient stability: the extended equal area criterion (EEAC) 
[1]-[2] and the boundary controlling unstable (BCU) 
equilibrium point method [3]-[5].  

Recent fundamental changes in power systems, e.g., 
replacement of conventional synchronous generators with 
inverter-based resources (IBRs), integration of large-scale 
distributed energy storages (electric vehicles), and integration 
of large amount of dispatchable loads, have resulted in more 
complex system dynamics. More importantly, due to the 
intermittence of renewables, power grids can experience 

more dramatic and frequent variations of operating 
conditions. This makes it infeasible to use traditional offline 
transient stability assessment methods, which only consider a 
few selected representative operating conditions. Thus, it is 
highly desirable to significantly improve its efficiency to 
achieve fast and accurate transient stability assessment based 
on real-time operating condition variations.  

The critical clearing time (CCT) of a three-phase fault at 
each high-voltage bus can be used as the transient stability 
index. In [6]-[8], the CCT is estimated using a Lyapunov’s 
type energy function or a transient energy function (TEF). 
This method has some limitations and does not guarantee 
accurate results all the time. Reference [9] proposes a 
combination of simulations and the CCT approximation 
method, which computes the approximated CCT using the 
energy function approach, starts the time-domain simulation 
with this approximated value, and finally obtains the accurate 
CCT. However, in a large power system, the accuracy of the 
energy function approach may not be guaranteed. As a result, 
the large error between the approximated CCT and actual 
CCT requires lots of repeated simulations to get the actual 
CCT. Also, extra calculation is needed to get the 
approximated CCT before the simulation.  

Artificial Intelligence (AI) technologies, especially deep 
learning neural networks, have many successful applications 
in various areas, such as image recognition and language 
processing [10]. They also have great potential to 
fundamentally transform the way today’s power industry 
monitors, analyzes, and controls power grids. Some 
researchers have investigated the application of AI in transient 
stability assessment. A deep imbalanced learning framework 
is proposed in [11], which can improve the effectiveness of 
transient instability recognition, since unstable cases are hard 
to see in an actual power grid. A convolutional neural network 
(CNN) transient stability classifier is developed in [12] to 
predict if the system is transient stable or not. A new transient 
stability assessment based on multi-branch stacked denoising 
autoencoder (MSDAE) is presented in [13]. MSDAE can 
achieve feature extraction and classification intrinsically and 
simultaneously in an end-to-end manner. However, their 
training dataset does not consider multiple operating 
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conditions due to renewable generation variations. Moreover, 
reference [14] investigates the adaptive remedial action 
scheme based on deep learning.  

This paper investigates the application of deep learning 
neural network in transient stability assessment. The reduced 
240-bus WECC system model is used as the study system, 
which has 8,784 hourly dispatches in total in a year of 366 
days [15]. CCT is used as the metric to assess the transient 
stability. The binary search algorithm is used to determine the 
CCT in time-domain simulations. Buses are grouped based on 
their mutual admittance matrix to identify the critical buses.  

II. STUDY SYSTEM AND TRAINING/TESTING DATASET 

A.  Reduced 240-bus WECC System Model 

The 240-bus WECC system model developed by the 
National Renewable Energy Laboratory (NREL) is a reduced 
model of the actual WECC system [16]. WECC system 
includes the provinces of Alberta and British Columbia in 
Canada, the northern portion of Baja California in Mexico, 
and all or portions of the 14 western states in the U.S. [17]. 

The 240-bus reduced WECC model has one year dispatch 
data obtained from the unit commitment and optimal power 
flow. The model reflects the generation resource mix of the 
WECC system as of 2018. Moreover, the developed dynamic 
model is validated against field frequency measurements by 
FNET/GridEye during actual events. The dynamic model 
preserves the dominant inter-area oscillation modes in the 
actual WECC system. Figure 1 shows the renewable 
penetration level in one year, which is varying between 0.20% 
to 49.19%.  

 
Figure 1.  Renewable penetration of the study system. 

B. Training/Testing Dataset Generation 

1) System transient stability definition: In this study 
system, there are 187 high-voltage buses, and the rest are 
generator buses at lower voltage levels. The fault is applied 
on each of the 187 buses and is cleared after time t. Around 2 
seconds after the fault is cleared, rotor angle signals are 
checked to see if any generators are out-of-step. To this end, 
generator’s relative rotor angle is used, which is defined as 
(1) 

ሻݐ௜ሺߜ  ൌ 	∆௜ሺݐሻ െ  ሻሽ                             (1)ݐሼ∆ሺ݁ݒܣ
where  is generator ݅ ’s relative rotor angle at time t. ∆௜ሺݐሻ is generator ݅’s rotor angle at time t. ݁ݒܣሼ∆ሺݐሻሽ is the 
average rotor angle of all large generators at time t. 

Generator ݅ is deemed as out-of-step in (2) if the relative 
rotor angle deviation is larger than 180଴  around 2 seconds 
after fault clearance. ܾܽݏ൛ߜ௜൫ݐ௣௥௘ି௙௔௨௟௧൯ െ ௔௙௧௘௥ି௙௔௨௟௧൯ൟݐ௜൫ߜ ൐ 180଴          (2) 

where t୮୰ୣି୤ୟ୳୪୲is time right before the fault, and tୟ୤୲ୣ୰ି୤ୟ୳୪୲ is 
first swing (2 seconds in this case) after the fault. 

In this study, CCT is used as the index of transient 
stability assessment. The CCT is defined as the maximum 
allowable time interval between the start and removal of the 
fault that maintains the system synchronized. However, the 
system will lose synchronization when fault is cleared after 
CCT. 

2) Binary search algorithm for CCT: To get the CCT for 
a specific bus in one selected operating condition, multiple 
simulations are performed. The binary search algorithm is 
applied to reduce the number of simulations. The binary 
search algorithm can find the position of a target value within 
a sorted array. In this paper, 0 to 2000 ms is the range for the 
CCT search. If the CCT is in this range, the actual CCT can 
be found in 11 repeated simulations at most (log 2000 = 11). 
Also, multiple cores of CPUs are utilized to accelerate the 
simulations. If a PC is equipped with an 8-core CPU, 
multiple-core processing will speed up the simulation 2 to 3 
times, considering the additional overhead time.  

TABLE I shows one example of the binary search 
method. After 11 repeated simulations with different fault 
clearing time values, the program found the accurate CCT for 
one specific bus. In this example, the CCT is 232 ms.  

TABLE I.  BINARY SEARCH ALGORITHM FOR CCT 

Simulation 
steps 

Fault clearing time 
(ms) 

Transient 
stability 

1st 1,000 Unstable 
2nd 500 Unstable 
3rd 250 Unstable 
4th 125 Stable 
5th 188 Stable 
6th 219 Stable 
7th 234 Unstable 
8th 227 Stable 
9th 231 Stable 
10th 233 Unstable 
11th 232 Stable 

 
3) Bus clustering: There are 187 buses in the system 

where faults can be applied to search for CCT. According to 
the NERC standard, backup relay is required to act in 12 
cycles, which is 200 ms [18]. It is assumed that buses with a 
small mutual impedance will have similar CCTs because of a 
shorter electric distance. For example, applying a bus fault on 
two ends of a short line may have very similar impacts, and 
thus the CCTs will be close to each other. Therefore, all the 
buses are 
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Figure 2.  Grouped Buses’ CCT in four typical scenarios (Group 1 to Group 19)

grouped according to their mutual admittance, and one 
representative bus from each group is chosen that has the 
lowest CCT in the group. Also, since different operating 
conditions will result in different CCTs for the same bus, four 
typical operating conditions representing the heaviest load 
case, lightest load case, lowest inertia case, and highest 
inertia case, are selected for simulations with the binary 
search algorithm to screen all buses’ CCT.  

In this study, buses whose mutual admittances are larger 
than 50 p.u. are grouped into one group. As a result, all 187 
buses are grouped into 57 groups. Figure 2 shows Group 1 to 
Group 19 for illustration. The groups are separated by black 
dash lines. In each group, there are red, yellow, purple, and 
green lines connecting different color dots. The lines 
represent lightest load case, lowest inertia case, heaviest load 
case, and highest inertia case respectively. The colored dots 
on each line represent buses in that group, and the dots of the 
same color in each group across different line represents the 
same bus. For instance, in Group 15, there are two buses 
represented by blue and orange. The CCT of the orange bus is 
always larger than 200 ms in four scenarios, while the CCT 
of the blue bus is less than 200 ms in the lightest load case 
and highest inertia case. In most groups, the bus with the 
lowest CCT is always the same in the same group across four 
cases. Note that the buses with CCT less than 200 ms are of 
our interest. In some groups, none of these buses has a CCT 
less than 200 ms. By using this grouping method, around 30 
critical buses with low CCT are identified for the transient 
stability assessment. 

4) Flow chart: The overall flowchart of the transient 
stability assessment is given as follows. 

Step 1: Pick four typical cases (lightest load, heaviest 
load, lowest inertia, and highest inertia,) for CCT scanning of 
all buses;  

Step 2: Calculate 187 buses’ CCT for each of these four 
cases using binary search algorithm;  

Step 3: Group all 187 buses into different groups by the 
admittance matrix and select the critical buses for this system 
which always has CCT less than 200 ms in four different 
scenarios;  

Step 4: Pick one or several buses from those critical 
buses for study. In this paper, only one bus (#6102) is 
selected for demonstration;  

Step 5: Calculate 8784 different CCT values for the bus 
picked in Step 4 for all dispatches of a whole year;  

Step 6: Build the machine learning model based on the 
results in Step 5, and train and test the machine learning 
model.   

III. DEEP LEARNING MODEL FOR TRANSIENT STABILITY 

ASSESSMENT 

A. Deep Learning Model 

In this study, the deep learning model is applied for 
transient stability assessment. The deep learning model is a 
neural network with more than one hidden layer. It can 
progressively abstract the input features from the previous 
layer to the next layer and results in better generalization. 
Generator dispatches and load flow results are the input of the 
neural network that are not sequential nor time dependent. 
The fully connected feed-forward neural network is a good fit 
for those features.  

Figure 3 shows the neural network model for the transient 
stability assessment. The input features are the generators’ 
dispatch and load flow results. The output of the model is the 
CCT of bus #6102. 

 
Figure 3.  Neural network model for transient stability assessment. 

B. Feature Normalization 

Feature normalization is an important data processing 
step before training the machine learning model. Normalized 
features can have similar scales, so the model training 
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efficiency can be improved. There are mainly two feature 
normalization methods: min-max normalization and standard 
normalization. Min-max normalization can scale the features 
into a range from 0 to 1, while standard normalization can 
scale features into Gaussian distribution with mean of 0 and 
standard deviation of 1. 

Typically, the normalization scale is obtained from the 
training dataset, and applied to both the training dataset and 
the testing dataset. For image processing, this would not be a 
problem, since pixel value range is always from 0 to 255 for 
any samples in the training dataset and the testing dataset. For 
other types of applications, when the training dataset does not 
cover the full range of minimum and maximum of the whole 
dataset, the normalization scale based on the training dataset 
only may be biased. Considering the power system physical 
model, this study normalizes the generator’s output according 
to the generator’s Pmin and Pmax settings in the model for 
both the training dataset and the testing dataset, as shown in 
(3).  

 

(3)

where ݔᇱ  is a generator’s normalized value. ݔ  is that 
generator’s output. Pmin(X) and Pmax(X) are generator’s 
Pmin value and Pmax value and in the simulation tool 
respectively. 

Similarly, for the load features, the scale is obtained from 
the whole dataset, as given in (4).  

 

(4)

where ݔᇱ is a load’s normalized value.  ݔ is that load’s output. X is one feature in whole load dataset. 

IV. SIMULATION 

Based on the method introduced in Section II and 
Section II, the whole training dataset for one of the critical 
buses, Bus #6102, is generated. The binary search method is 
used during the CCT searching simulation, and the training 
dataset’s CCT resolution is 1 ms. The deep learning neural 
network model defined in Figure 3 is built for transient 
stability assessment and trained based on the training dataset.  

A model with too many layers and nodes tends to be over 
fitting, while one with insufficient layers and nodes tends to 

be under fitting. In this study, models with 3, 6, 8 and 9 
hidden layers are built and tested. Different learning rates of 
0.001, 0.005, 0.008, 0.01, 0.02 and 0.025 are attempted 
during model training. Dataset percentage for training also 
has an impact on the model’s performance. Model’s 
performance based on different percentages of training 
dataset is also compared. Validation is performed during the 
training process to prevent overfitting. The training process 
ends when the model stops improving on the validation 
dataset during training. TABLE II lists the best models’ 
performance tested on the testing dataset when trained with 
different training dataset percentages. Root Mean Squared 
Error, Mean Absolute Error (MAE), and r-squared are used as 
the metrics. 

From the table, when the training dataset reaches 70%, 
the model’s performance does not improve anymore with the 
increasing training dataset percentage, e.g., the model’s 
performance is very close when the training dataset is 70% 
and 80%.  

 
TABLE II.   MODEL PERFORMANCE COMPARISON. 

Training dataset 
Percentage RMSE (ms) MAE (ms) ࡾ૛ 

10% 0.01636 0.011676 0.84093 
20% 0.013938 0.009868 0.883444 
30% 0.012441 0.008571 0.906948 
40% 0.01119 0.007822 0.925682 
50% 0.009527 0.006259 0.94582 
60% 0.00932 0.005635 0.948318 
70% 0.006019 0.003755 0.978561 
80% 0.006067 0.003400 0.977657 

 
Figure 4 shows the model’s CCT prediction value, 

prediction error histogram, and Gaussian distribution on the 
testing dataset (1845 testing samples) when trained with 70% 
training dataset (4303 training samples). The MAE on the 
testing dataset is 3.75ms. The standard deviation of the error 
is 6.01 ms. According to the probability density function 
(PDF) in Figure 4(c), with 95% probability, the prediction 
error ranges from -12ms to 12.1 ms. Figure 5 shows the daily 
prediction of CCT value. The daily result shows the predicted 
CCTs match well with the simulated values. 

 

  
 

(a) CCT prediction on testing dataset (b) CCT prediction error histogram (c) CCT prediction error Gaussian distribution 

Figure 4.  Testing result and error. 
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(a) Daily prediction on Apr. 27th  (b) Daily prediction on Sep. 9th (c) Daily prediction on Sep. 23rd 

Figure 5.  Daily prediction results. 

V. CONCLUSION 

This paper proposes a deep learning-based transient 
stability assessment method that predicts the CCT values 
quickly and accurately under different operating conditions. 
In the training dataset generation, the binary search algorithm 
is used for CCT calculation, which can find the bus’s CCT 
within 11 simulations at 1 ms resolution. This provides an 
accurate training database for training the deep learning 
model. This paper also proposes a bus grouping method 
based on the mutual admittance, so it can find critical buses 
in the system quickly. The simulation results show that the 
model trained with 70% training dataset has good 
performance, and the daily prediction results demonstrate that 
the model can accurately predict CCT values.   
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