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Abstract—This work presents a novel deep learning model for
early, accurate, and robust detection, recognition, and temporal
localization of multi-type events in large-scale power systems.
The proposed method develops a unified 1-D fully convolutional
network (FCN) model that takes time series of raw frequency
signals measured from a power system as input, extracts dis-
tinguishing features, and predicts at every temporal point in
the time series if an event is happening and what the type of
the event is. Compared to existing methods, the proposed model
eliminates the necessity for hand-crafted feature extraction or
complicated data pre-processing, can flexibly handle input signals
of arbitrary length, and precisely infer the event occurrence
time. Most importantly, the model is intentionally trained with
incomplete patterns, such that it is more robust to partial features
of an event which is common in real-world online recognition,
resulting in early alarm for power system failures. Extensive
experimental results demonstrate that the proposed method
achieves superior performance to the state-of-the-art, and also
shows strong robustness to noise and system oscillations.

I. INTRODUCTION

In today’s power grid systems, the ever-increasing scale and
complexity demand the capability of early alarm for situational
awareness, such that an event can be captured at its early stage,
and the corresponding safety operations can be taken properly
and timely to prevent potentially cascading events or large-
scale outages from happening [1]. As a result, early, accurate,
and robust detection and recognition of various system events
become vitally important. Early efforts on event detection and
recognition were mostly model-based [2], [3]. These meth-
ods, although effective, heavily rely on the control-theoretic
modeling of power systems that are tightly coupled with
many influential factors pertaining to different environmental
changes or types of equipment used, making these models
very difficult to design and generalize. On the other hand,
the large-scale deployment of various monitoring devices in
power systems, such as the phasor measurement unit (PMU)
[4] and the frequency disturbance recorders (FDR) [5], greatly
facilitates the acquisition of a large amount of measurement
data at low cost. As a result, numerous data-driven event
analysis approaches have surfaced [6], [7].

Machine learning is essentially a data-driven approach,
and has been popularly used to solve the event detection
problem in power systems [8]–[10]. Most of these methods
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first extract features from the raw measurement data and then
feed the features to a classifier for event detection or recogni-
tion purpose. A variety of signal processing techniques have
been employed for feature extraction, including, for example,
Fourier transform, Wavelet transform, Stockwell transform,
and sparse coding [8], [11]–[14]. In the meanwhile, numerous
general-purpose classifiers have been adopted for classification
purposes, with the support vector machine [9] and neural
networks [15] being the two most popularly used. However,
extracting a set of effective features is a non-trivial task and
needs deep domain knowledge.

More recently, deep learning techniques [16], also referred
to as deep neural networks (DNN), have brought unprece-
dented advantages to the event analysis for power grids. For
example, Li et al. [17] proposed to extract features with
physical interpretations and then employ the Convolutional
Neural Network (CNN) for fault localization. Wang et al.
[18] developed two CNN models to detect events, each of
which handles one type of measurement signal. Yu et al. [19]
devised a scheme that extracts statistical features with Wavelet
transform and then employs a CNN for fault classification,
phase identification, and location detection.

Although effective, these methods still have not fully lever-
aged the superior feature extraction capability of deep learning.
One essential drawback of existing methods is that they all
conduct the event detection and recognition tasks based on
segments of the signal of a “fixed” window size. Compared to
the early ad hoc approaches [20]–[22] where the magnitude of
frequency change is detected at each point in the time series,
the segment-based analysis could be much more tolerant to
noises and oscillations for recognition purpose [23]. However,
it also suffers from three drawbacks. First, the window size
is hard to determine, especially for events of different types.
Even events of the same type could present significant intra-
class variation due to the complexity of the system and
the degree of power changes, which might result in diverse
patterns of different lengths. Second, the fixed window-size
approaches need to wait until the complete time series within
the window is collected before performing the recognition,
which inevitably delays the response time of the system. Third,
since an effective event recognition approach is supposed to
tolerate signal segments that present only partial features, the
adjacent segments, e.g., seg1, seg2, and seg3 in Fig. 1 may
all be detected and recognized with the correct event label,
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making it difficult to estimate the exact occurrence time of
the event. This might be the reason why existing works mainly
address the problems of event detection or event recognition
but cannot perform occurrence time localization well.

Fig. 1. Illustration of event detection and temporal localization using fixed
window-size, where seg1, seg2, seg3 are three cropped segments of fixed
size at time t1, t2, t3, respectively. All of them could be recognized as an
abnormal event using a classifier after proper training. However, none of them
is able to provide the precise event occurrence time, marked as “T occur”.

There are a few existing works that attempted to solve
the event detection, recognition, and temporal localization
problems in a unified framework [11], [14], however, they
are still based on analysis of complete fixed-length signal
segments and do not leverage the superior feature extraction
capacity from deep learning for early alarm. Furthermore, most
of the existing event analysis works only focus on three event
types, i.e., generator trip, line trip, and load shedding, but
often exclude oscillation due to the indistinct feature it carries
and the interference of system noises, although oscillation is
a common event type in power systems.

In this paper, we tackle the above challenging issues by pre-
senting a holistic (i.e., end-to-end) DNN-based approach for
simultaneous detection, recognition, and temporal localization
of all the four types of events (including oscillation) without
the constraint of fixed window size. To our best knowledge,
this is the first attempt in the literature. The backbone of
our model is a 1-D fully convolutional network (FCN). The
concept of FCN has been revived since [24], which converts
the classic CNN [25]–[27] into an FCN for the problem of
image semantic segmentation, i.e., pixel-wise class labeling.
Although originated from CNN [28], [29], FCN carries its
unique characteristics that would greatly advance the state-
of-the-art event analysis for power systems. The proposed
model takes in the streaming time series of signals and outputs
predictions if an event is happening and what kind of event it
is, at every single point in the time series - hence capable
of indicating the exact occurrence time of the event. The
advantage of the proposed method is multi-fold.

1) Multi-tasking: The proposed approach addresses event
detection, recognition, and temporal localization within
a single deep network, which can be easily trained end-
to-end.

2) Early detection: Due to the point-wise prediction ability,
the proposed method does not need to wait for a com-
plete pattern to appear for the recognition, hence the
ability of early detection.

3) Accuracy and Robustness: Benefiting from the learnable
feature extraction capability in DNN, the extracted fea-
tures are of much higher discrimination than handcrafted
feature extractors. Therefore, the proposed approach can
distinguish different kinds of events, including oscilla-
tions, more accurately with stronger robustness.

4) Adaptivity: The proposed 1-D FCN model can handle
arbitrary-length time series, eliminating the demand for
predefined window size, and run predictions efficiently.

II. PRELIMINARY: CNN AND FCN

CNN has become the de facto standard for signal and image
processing and served as the backbone of many deep learning
models. CNN is composed of a sequence of layers, each of
which transforms one volume of activations to another through
a differentiable function. Three typical layers are used to build
CNN architectures: the convolution layer, the pooling layer,
and the fully-connected layer. The convolution layer is used
to generate responses to different aspects/objects in the data,
the pooling layer is used to shrink the activations for multi-
scale feature abstraction, and the fully-connected layer feeds
the overall feature into a classifier and predicts the final class
label. The convolution kernels in the convolution layer and
the weights used in the fully-connected layer are updated
through the back-propagated loss via gradient, thus CNN has
superior feature extraction capability to the previous hand-
crafted features and more robust recognition accuracy.

Fig. 2. Framework of FCN-based event analysis, which predicts dense point-
wise class labels for the given signal, where a generator trip (GT) was
identified.

In contrast, FCN removes the last fully-connected layer,
making the whole network composed of only convolution
layers and pooling layers. Due to the down-scale in pooling
layers, the output size will be much smaller than the input data.
In essence, FCN predicts the class labels in the last convolution
layer for each local area of the input data. Using deconvolution
layers or simply up-scaling is able to restore the output to
the same size as the input. As shown in Fig. 2, an FCN is
composed of two main modules, the feature extraction part,
referred to as the encoder, and the deconvolution part, referred
to as the decoder. It is able to predict a class label for each unit
of the input data. In other words, the FCN could be interpreted
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as employing a CNN classifier to predict a class label for each
segment cropped by a sliding window that centered at every
unit in the signal. Therefore, FCN naturally operates on inputs
with arbitrary size and produces an output with the same or
linearly down-sampled dimension.

For offline event analysis with complete time series, there
is not much difference between an FCN and a CNN-based
classification on segments cropped by a sliding window. Both
could generate dense class labels for each unit in the signal.
However, FCN does this in a much more efficient way. We take
the example of two segments cropped from a fix-size sliding
window at two adjacent units with a large overlap. Although
the two segments only differ slightly, each of which needs to
pass through the CNN layers for feature extraction and class
label prediction separately, resulting in quite a lot of repeated
computation. In contrast, FCN computes multi-scale features
for the whole signal first, so that the features computed in a
low-level layer could be used by the upper-level layer directly,
and thus no redundant computation exists.

For online event analysis, the advantage of FCN becomes
even more prominent. As mentioned earlier, the event occur-
rence time could not be precisely determined from a sliding
window cropped segment. For example, in a real monitoring
system, the inspection will be applied to a segment of the latest
streaming data, e.g., seg3 in Fig. 1. For seg3 at t3, the event
pattern is already well-formed, such that it can be successfully
recognized and the alert triggered. However, the true occurring
time Toccur cannot be derived from the recognition of seg3. In
contrast, given seg3 in real inspection, FCN will scan each unit
in seg3, and output the highest confidence at the true point of
Toccur. Especially, if the current moment is even earlier at t1
in Fig. 1, where the pattern of the event may just start partially
appearing toward the tail. For existing pattern recognition
models trained by complete event patterns, the latest segment
seg1 may not be recognized as an event but instead as noise.
Since FCN is trained in a point-wise manner and intentionally
trained with incomplete patterns, it repeatedly inspects each
unit in seg1 and the classification at the unit Toccur could
have high confidence of being an abnormal event.

III. METHODOLOGY

A. Problem Formulation

Since any event occurring in a power system will cause
certain frequency changes and oscillations until the system
becomes stable at another frequency level, in the context of
this paper, we use the time series of frequency signals as model
input. However, the algorithm developed can be generalized
to detect anomalies from other time series. Suppose there are
M monitoring devices (e.g., FDR, PMU) installed with each
bus hosting one such device, where the time-series signals can
be collected. We conduct event analysis in a power system on
all four typical types, namely, generator trip (GT), line trip
(LT), load shedding (LS), and oscillation (OS). In addition,
we add the normal status as the fifth label. The measurement
data collected from these M devices over a certain duration
can be represented as a matrix X ∈ RM×T , as shown in Eq. 1,

where T is the number of the units/samples recorded in the
time series. Namely, the matrix X denotes an M -channel 1-D
time series, with each column, xj (j = 1, . . . , T ), denoting a
temporal point (a vector) from the M observation sites.

X =


x1,1 x1,2 . . . x1,j . . . x1,T

x2,1 x2,2 . . . x2,j . . . x2,T

...
...

...
...

xM,1 xM,2 . . . xM,j . . . xM,T

 (1)

Given the observation X, we formulate the event detection,
recognition, and temporal localization into a unified point-wise
classification problem, which can be perfectly implemented by
an FCN deep learning model. The general framework of the
proposed method is shown in Fig. 2. Inspired by [24] where
FCN was used to generate a dense prediction for pixel-wise
image segmentation, we employ FCN to produce a point-wise
prediction for the given signal.

Mathematically, the proposed FCN model can be formulated
as Y = f(X|Θ, D), where XM×T is the measurement data,
Y ∈ R5×T is the corresponding output categorical prediction.
Each column vector in Y, yj , denotes the probability of
the event belonging to the 5 classes considered (GT, LT,
LS, OS, and normal) at time j. f represents the mapping
function of the prediction model with with well-designed
neural network structure (will be elaborated in section ??) and
Θ being the parameters that need to be optimized in training.
D = {Xi,Yi}i∈I is the training dataset consisting of pairs
of measurement data, Xi, and their corresponding point-wise
event type, Yi, and I is the set of indices of training samples.

Fig. 3. Point-wise and temporal information encoded ground truth annotation.

A key point that makes our FCN model different from
previous works is the way the annotation is generated. As
illustrated in Fig. 3, in the temporal-aware label matrix Y5×T ,
only one single unit in the time series at the occurrence time
was annotated as one of the four abnormal states, while the
other units, even the ones during the state transition are all
annotated as normal states. Using this annotation, the model
can be trained to achieve superior discrimination for the pattern
at the true occurrence time, and thus the model achieves the
best capability to localize the actual time when an event starts
to occur. Briefly, the advantages of our FCN model include:
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it 1) has outstanding feature learning capability, 2) is able to
handle arbitrary-sized inputs, and 3) can generate point-wise
dense predictions with temporal information encoded.

Input 
TxM 

Output 
TxC Copy 

64 
128 

256 512 512 

Conv-1D 
(kernel=3, stride=1) 

Max Pooling  
(kernel=2, stride=2) 

256 128 
64 

+ + + 

Channel-wise  
Concatenation 

+ Deconvolution 

Fig. 4. The 1-D FCN network architecture. The model builds upon small
convolution layers of kernel size 3, with skip-connection between parts of
encoder and decoder, yielding output of the same size as input with accurate
point-wise labeling.

B. Network Design

Since the frequency signals under study are 1-D time series
with M channels, 1-D convolution layer is adopted as the basic
block of our FCN model. Inspired by VGG [30] and FCN for
image semantic segmentation [24], our neural network is also
built with small convolution filters, e.g., conv layers of kernel
size 1× 3 and stride 1, max-pooling layers of window size 2
and stride of 2. The up-sampling part in the decoder is carried
out with learnable transposed convolution. To further refine
the temporal detection in the dense output, skip-connections
are used to combine features from corresponding layers in the
encoder and decoder. As frequently used in dense prediction
tasks, skip connections [31] help to enable feature reusability
and stabilize model training and convergence. The details of
our network are shown in Fig 4.

C. Training Details

1) Loss Function and Parameters Optimization.: Since the
training set is severely skewed where most event samples
belong to the “normal event” category, the cross-entropy loss is
utilized to measure the discrepancy between the ground truth
and the actual output of the model such that the class-wise
training loss can be balanced by the weighted cross-entropy
loss. A less-than-1 scaling factor is applied for the normal-
event class, and the weighted cross-entropy loss is defined as
Eq. 2,

L = −
I∑
i

T∑
j

C∑
c

sc ×Yc
i,j × log f(Xi,j)

c
, (2)

where Yc
i,j and f(Xi,j)

c are the ground-truth and predicted
probabilities of the j-th temporal point belonging to class c in
point-wise label Yi respectively, C is the number of classes
considered, i.e., C = 5 in this work. sc is the scaling factor
for class c, which is set as 0.1 for the class of normal status
and 1 for all the other event classes (GT, LT, LS, and OS).
Parameters of the model are initialized using He’s normal
initialization [32]. Model is trained for 60 epochs from scratch

using Adam optimizer with a learning rate of 2e−4. The batch
size was set as 16, and weight decay was set as 1e−5 to reduce
over-fitting. All these hyper-parameters are determined based
on thorough empirical studies.

Randomly permute

(a) Channel Shuffling

Copy

Copy

(b) Temporal Shifting

Fig. 5. Illustration of channel shuffling and temporal shifting for training data
augmentation.

2) Data Augmentation.: Training a deep learning model
usually requires a relatively large dataset, otherwise, overfitting
might become a potential issue. However, in this work, the
training samples for the four event types can be very limited.
To mitigate this problem, data augmentation is conducted,
including channel shuffling and temporal shifting. As shown
in Fig. 5(a) where each of the M channels is represented
in a unique color, channel shuffling is a random permutation
of the M channels for each training signal. Fig. 5(b) shows
the temporal shifting where we shift the fixed-length training
signals from left to right along the temporal axis and pad the
missing values at the beginning with zero, resulting in events
represented by partial pattern. The temporal shifting largely
improves the model capacity in early detection.

IV. EXPERIMENTS AND RESULTS

Extensive experiments are conducted to evaluate the model
performance from different aspects, including (1) model per-
formance for event detection, recognition, and temporal local-
ization, (2) modal capacity for early detection, (3) the effect
of the number of channels (or sensing devices) used, (4)
model sensitivity to noise, (5) model robustness in handling
the oscillation event, and (6) the computation analysis. In
the following, we first detail the experimental setup and
performance metrics used.

A. Experimental Setup

1) Dataset: The proposed model evaluation is conducted
on a benchmark system, the Northeast Power Coordinating
Council (NPCC) testbed, which is a reduced PSS/E [33]
simulation model of real systems covering the whole or
parts of ISO-NE, NYISO, PJM, MISO, and IESO [34]. The
NPCC model has 140 buses, 48 machines, 230 branches, and
28GW loads. It keeps the characteristics of real systems and
represents the backbone transmission of the northeast region
of the Eastern Interconnection [35]. The dataset of event
instances from the NPCC testbed includes 91 GT, 93 LS, and
96 LT cases. Besides, 60 oscillation cases are also included
to study model robustness to oscillations, which are generated
by applying a three-phase bus fault at every single bus. The
length of each instance is around 30 seconds recording the
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event pattern during the system state transition. The sampling
rate is 10Hz, resulting in about 300 samples in the recording of
each instance. The occurrence time of each sample varies in a
range from the 1st second to the 12th second in the recording.
With the proposed data augmentation, we further extend the
occurrence time into a wider range for early event detection.
The dataset is randomly divided into training and testing sets
with 70% and 30% instances, respectively. It is guaranteed
that the instances in testing are not seen during the training.

2) Implementation: We implement all the experiments with
TensorFlow [36] on NVIDIA GeForce GTX 2080ti and In-
tel(R) Core(TM) i7-6850K CPU@3.60GHz. The source code
and pre-trained model will be released after the publication.

3) Metrics: For a fair comparison, we adopt the same
evaluation metrics used in [11], [14], including the detection
accuracy (DA), false alarm rate (FA), event pattern recognition
rate (EPR), and occurrence time deviation (OTD).

• Detection accuracy (DA): Suppose the event actually
occurs at time Toccur. If the model can detect the event
within the range of [Toccur − δ, Toccur + δ], where δ is
a very small value, then we consider the model correctly
detects the event; otherwise, it is a false alarm. DA de-
notes the ratio between the number of correctly detected
events and the number of total events. The effect of δ on
DA will be further evaluated.

• False alarm rate (FA): FA is the ratio between the number
of falsely detected events and the number of total events.

• Event pattern recognition rate (EPR): EPR calculates the
percentage of the correctly classified events out of the
total correctly detected events.

• Occurrence time deviation (OTD): OTD indicates the
relative deviation between the derived occurrence time
and the actual occurrence time.

B. Experimental Results

We conduct six sets of experiments to provide a compre-
hensive evaluation of the proposed model for the tasks of
event detection, recognition, and temporal localization. In the
following, we first compare the proposed model with state-of-
the-art approaches using the four metrics explained above. We
then study the modal capacity in terms of early detection, the
number of channels (or sensors) used, sensitivity to noise, and
oscillation detection. We also provide computational analysis
in the end.

1) Comparison with the state-of-the-art: We compare the
performance of the proposed model with two recent works, a
sparse coding method, CSC [11], and a deep learning-based
method, FED [18]. The former (CSC) method was applied
for event detection, recognition, and temporal localization
simultaneously and has achieved state-of-the-art accuracy [37],
while the latter (FED) method was for event recognition only.
For event detection and temporal localization, the parameter δ
controls the tolerance to imprecision.

We first set δ = 0 for zero tolerance to imprecise temporal
localization. The corresponding results are shown in the first
row of Table I. We can observe that the CSC method cannot

detect any events with this high precision, none of the derived
occurrence time matches the ground truth, resulting in DA rate
as 0. Under this rigorous condition, our method still achieves
a 98.81% DA rate, with the FA rate being only 14.28%, and
this is why the compared method’s FA rate can be 102.08%.
Note that one single event might be detected as multiple false
alarms. The FED method only works for event recognition,
with the EPR rate being 92.86%, which is not as high as the
100% EPR from our model.

We also relax the value of δ to 0.1, 0.2, 1.0, 3.5 sec,
respectively, so the event detection will be treated as correct if
the derived occurrence time falls into the interval of Toccur±δ,
which also indicates the OTD is less than δ. The results are
shown in Row 2 through Row 5 of Table I. We can observe that
our method achieved a 100% DA rate with δ = 0.1 without
any false alarm. In contrast, the CSC method only achieves a
37.5% DA rate. If increase the δ to ≥ 0.2, the DA rate for CSC
could be boosted significantly, but the FA rate is still above
0. For event pattern recognition, both CSC and our method
achieve very good accuracy. In the subsequent experiments,
we fix δ at 0.1 sec unless otherwise specified.

TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART.

Interval δ (s) Method DA (%) FA (%) EPR (%)

0.0
CSC 0.0 102.08 NA
FED NA NA 92.86
Ours 98.81 14.28 100

0.1 CSC 37.5 63.89 100
Ours 100 0 100

0.2 CSC 96.53 4.86 100
Ours 100 0 100

1.0 CSC 100 1.39 100
Ours 100 0 100

3.5 CSC 100 1.39 100
Ours 100 0 100

2) Study of early detection: This experiment explores how
early the proposed approach can achieve accurate detection,
recognition, and temporal localization by feeding incomplete
signal segments into our model. We intentionally truncate the
input time series after event occurrence such that the event
lasted for 1, 2, 2.5, 5, and 10 seconds, respectively. The
experimental results are reported in Table II. We observe that
we can detect 50% of events as early as in the first second.
Also, the DA rate could be improved to 97.6% once the event
lasted for 2 seconds. Furthermore, with more data streaming
in, the OTD value of the derived occurrence time could also
be reduced.

TABLE II
PERFORMANCE ON EARLY DETECTION WITH δ = 0.1sec.

Event DA (%) FA (%) EPR (%) OTD (s)
Duration (s)

1.0 50 0 100 0.04
2.0 97.62 0 100 0.04
2.5 100 0 100 0.02
5.0 100 0 100 0.01
10. 100 0 100 0.01
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3) Study of number of channels: This experiment studies
the model robustness to the number of input channels (or
monitoring devices), M , used. Intuitively, the more monitoring
devices used, the more tolerant the model is to noise. In the
experiments, the default value of M is 5. Here, we vary the
number of channels, M , to 1, 3, and 5, respectively and re-train
the model and evaluate the event analysis accuracy. All the
experimental results are reported in Table III. We can observe
that fewer channels carry less information, making it a bit more
challenging for event analysis. However, with 1 channel only,
the DA rate and FA rate just degrade slightly with the EPR
rate kept at the same 100%. In addition, the OTD value is just
slightly increased with only one monitoring device used. The
results demonstrate the strong feature extraction capability of
the proposed deep learning model so that we can safely make
operational decisions for the power system when fewer sensing
devices are available.

TABLE III
ACCURACY FOR THE DIFFERENT NUMBER OF CHANNELS OR MONITORING

DEVICES USED.

Channels DA (%) FA (%) EPR (%) OTD (s)
1 98.57 1.19 100 0.04
3 99.60 0.71 100 0.01
5 100 0 100 0.01

4) Sensitivity to noise: This experiment evaluates the model
from the perspective of robustness to noise. We manually add
different levels of Gaussian noise to the signals. In order to get
an intuition of noise intensity, we show the noisy signals with
different signal-to-noise ratios (SNR) in Fig. 6. Experimental
results are shown in Table IV. It is observed that the proposed
method can maintain almost the same level of accuracy when
the SNR is as low as 30 dB. However, the CSC method only
achieves 95.65% DA and 29.13% FA rates, respectively, with
SNR being 40 dB [11].
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Fig. 6. Illustration of noisy signals with different SNRs as model input.

5) Robustness to oscillation: The oscillation event has
been recognized as a vital concern for the stability of power
systems. Although there have been extensive studies focusing
on oscillation itself, most existing works for event analysis
choose to exclude it. The challenges of oscillation analysis lie
in several aspects. First of all, oscillations can be excited by
other types of events, including even non-obvious disturbances
or normal power system operations [38]. Second, although it
is commonly observed that oscillations are associated with
generator trip, load shedding, or line trip events, their effects

on these three types of event analyses are quite different. For
GT and LS, the influence of oscillation is small since it will not
change the general pattern (or frequency profile) of GT/LS and
thus can be treated as noise. However, oscillation presents a
non-ignorable challenge to LT, whose frequency change profile
can be quite similar to those of oscillations.

In this experiment, we include oscillation as one of the event
categories and report the prediction accuracy for each category
separately. From the results of clean data shown in the first
row of Table IV, we can see that the oscillation only degraded
the DA rate of LT slightly from 100% to 96.7%, and the DA
rate for oscillation itself also achieved 100%. The mean FA
rate was increased a bit to 1.08%, and the OTD value is trivial
that less than 0.001 seconds.

TABLE IV
EXPERIMENTAL RESULTS ON CLASS-WISE ANALYSIS ACCURACY WITH

DIFFERENT LEVELS OF GAUSSIAN NOISE (MEASURED IN SNR)
PRESENTED.

SNR Type DA (%) FA (%) EPR (%) OTD (s)

Clean

GT 100 0 100 0
LS 100 0.77 100 0
LT 96.77 0 100 0
OS 100 6 100 0.006

Mean 99.02 1.08 100 0.00099

60 dB

GT 100 0 100 0
LS 100 0.77 100 0
LT 96.77 0 100 0
OS 100 6 100 0.0067

Mean 99.02 1.08 100 0.00099

50 dB

GT 100 0.33 100 0
LS 100 0.77 100 0
LT 96.77 0 100 0
OS 100 5.33 100 0.013

Mean 99.02 1.08 100 0.00198

40 dB

GT 100 0 100 0
LS 100 0.38 100 0
LT 96.77 0 100 0
OS 100 2.66 100 0.013

Mean 99.02 0.49 100 0.00198

30 dB

GT 96.33 3 100 0.0034
LS 98.46 2.69 100 0.0658
LT 96.77 0 100 0
OS 99.33 1.33 100 0.1476

Mean 97.45 1.76 100 0.04

25 dB

GT 79.67 0 100 0.0085
LS 89.61 1.54 100 0.128
LT 96.77 4.19 100 0
OS 58.67 8.67 100 0.3283

Mean 84.31 2.94 100 0.0708

20 dB

GT 47.00 9.66 100 0.18
LS 96.54 4.62 100 0.2057
LT 96.77 11.61 100 0
OS 35.33 37.33 100 0.432

Mean 70.49 13.04 100 0.13

6) Computation analysis: In this last set of experiments,
we measure the model latency for both training and inference,
where we run 5 trials and 100 trials for training and inference,
respectively. The average time for training with 60 epochs
is 16.3 min, and the average inference time for a sample
with a length of 30 sec is only 0.017 sec, which significantly
surpasses the sampling frequency of 10 Hz. Hence, our model
can easily achieve real-time performance for event detection
in real power systems.
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V. CONCLUSION

This work presented a new approach for event monitoring
in situational awareness of power systems. The proposed
model enables multi-tasks within a single fully convolutional
network, including event detection, recognition, and temporal
localization. The approach takes advantage of the excellent
feature extraction ability of deep learning, which helps to
achieve superior performance as compared to other existing
works. More importantly, due to our training strategy, the
proposed model is also very sensitive to partial features, and
presents prominent effectiveness for the early detection of
abnormal events.
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