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Abstract—This work presents the implementation of deep
reinforcement learning (DRL) agents as supplementary primary
frequency controllers. To achieve this, the primary frequency
regulation problem is formulated in a DRL framework, where
an actor-critic algorithm, for continuous actions space, is used
to change the frequency reference of traditional governors. By
modifying this reference, the DRL agent effectively reduces
the magnitude of the frequency nadir and rate of change of
frequency, thereby enhancing the power grid frequency response.
Two DRL algorithms including Deep Deterministic Policy Gra-
dient (DDPG) and Twin Delayed DDPG (TD3) are employed
for the frequency regulation. The supplementary control using
these two algorithms is tested on a 14-bus, 5-machine test system.
The results show that the frequency stability of the grid can be
improved by using DRL algorithms as supplementary controllers
in the primary frequency regulation.

Index Terms—Primary frequency control, frequency stability,
deep reinforcement learning, TD3, DDPG.

I. INTRODUCTION

Changes in the load-generation balance lead to frequency
deviations due to the electromechanical coupling among all
synchronous generators (SGs) in the grid. To address devia-
tions, each SG governor regulates the valve/gate position to
adjust the injection of the working fluid—steam, water, or
gas—and regulates the mechanical input of the generator. As
a consequence, the injection of electrical power into the grid
is also regulated. Governors are provided with droop control,
which is a characteristic given by the ratio of frequency
deviations to changes in valve/gate position [1]. This droop
characteristic is defined for each SG, such that for the same
frequency deviation, each SG provides injects power according
to its own regulating capabilities. In general, this is called
primary frequency control (PFC), which is in charge of dealing
with the frequency nadir, the rate of change of frequency
(ROCOF), and the post-disturbance frequency prior to the
automatic generation control (AGC) actuation. In the context
of conventional power grids with reduced participation of
variable renewable energy resources (VRE), the droop charac-
teristic is enough to provide frequency regulation. However, in
the case of new power grids with the increased participation
of VRE, distributed energy resources (DERs), and smart
loads, dealing with frequency regulation is a bigger challenge,
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primarily because of the decommissioning of SGs, the inertia
reduction, and the increased variability of the grid [2].

Currently, PFC faces several specific challenges. First, the
droop characteristics become sub-optimal because the SGs
participation and inertia condition in the grid is more variable.
Second, there is a lack of coordination between SGs, VRE,
and DERs. Furthermore, the droop mechanism introduces
a delay in actuation, which can be further exacerbated by
inverter-based resources with limited power injection support.
Consequently, the need arises for new adaptable solutions
capable of adjusting the response according to the system
condition, disturbance, and VRE/DERs participation.

In this work, DRL algorithms are used to provide more
intelligence and adaptability to the SGs governors. Previous
works have explored secondary frequency regulation [4] and
primary frequency regulation [5]. The former was imple-
mented using ANDES [6] and OpenAI Gym [7], which are
Python libraries for power systems analysis and RL projects,
respectively. The latter was implemented in Matlab/Simulink
using a basic single-machine finite-bus system. In this work,
the IEEE 14-bus system is used as an environment together
with AndesGym [4] to implement an agent for continuous
action space. The contributions of this work are 1) DRL pri-
mary frequency controller (DR-PFC), the primary frequency
regulation problem is put in a detailed DRL framework, then
actor-critic methods are used as the engine motor of DRL-
agent implementation. 2) Comprehensive analysis of DRL
algorithms for PFC. Sensitivity analysis is performed using
DDPG to understand how hyperparameters could affect DRL
agents. Moreover, a final comparison with TD3 is performed,
showing its superior capability to deal with continuous action
spaces. The rest of this paper is structured as follows: Section
II presents the basic concepts of DRL and the DRL-PFC idea;
Section III describes its implementation; Section IV presents
the study case including results, and finally, the conclusions
are presented in Section V.

II. PRIMARY FREQUENCY RESPONSE USING DRL
A. Deep reinforcement learning basics

Reinforcement learning is a sub-field of machine learning
where an agent uses trial and error to solve problems modeled
as a Markov Decision Process (MDP). An MDP, as shown
in Figure 1, describes the typical RL problem where an
agent interacts with an environment and receives feedback
in the form of the environment state st+1 and reward rt+1
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corresponding to the action at ∈ A, where A is the set of all
possible actions. The goal of the agent is to learn an optimal
policy π∗, a set of actions corresponding to observed states,
that maximizes the expected future rewards. Thus, this policy
is obtained as,

π∗ ∈ argmax
π

{
J(π) = Eπ

∞∑
t=1

γtr(st, at)

}
(1)

were π∗ is an optimal policy that maximizes the infinite
horizon discounted reward or expected return J(π) given by
the expectation of the sum of all future rewards r weighted
by the discount factor γ. The discounted factor allows the
convergence of the summation, otherwise for non-episodic
problems this result will not be finite [9], [10].

DRL algorithms combine artificial neural networks and
traditional reinforcement learning approaches to solve MDPs
with high-dimensional states and action spaces. The agent
is able to learn complex actions and emulate any nonlinear
behavior through deep neural networks while interacting with
the environment inside the MDPs.

Prior to presenting DRL on primary frequency control, it
is important to define the concept of action space, which
represents the set of all possible effective actions that an
agent can take. According to this, reinforcement learning
algorithms can be divided into three different types: discrete
action space, continuous action space, and hybrid action space.
The first one refers to those problems in which the action
set is countable, the second considers an uncountable number
of possible actions, and the third is a combination of both
[11]. This paper will focus on algorithms for continuous action
space problems since a power grid is a large environment that
is constantly changing, making it impossible to quantify the
number of possible actions and states.

B. Deep reinforcement learning primary frequency control

To explain the DRL supplementary primary frequency con-
trol, consider a IEESGO governor model [8]. By setting
K2 = K3 = 0, the reduced set of differential-algebraic
equations associated with the model becomes,

T1ẏ1 = −y1 +K1(ω − 1) (2)
T3ẏ3 = −y3 + y1 (3)

T4
˙Tm = −Tm + PV (4)

y2 =

(
1− T2

T3

)
y3 +

T2

T3
y1 (5)

PV =


PC − y2, Pmin ≤ PC − y2 ≤ Pmax

Pmax, PC − y2 ≥ Pmax

Pmin, PC − y2 ≤ Pmin

(6)

where ω is the SG speed in p.u., K1 is the inverse of the droop,
PV is an intermediate variable used to implement Pmax and
Pmin limits, Tm is the mechanical torque, y1, y2, and y3 are
internal variables of the model, and T1, T2, T3, and T4 are

Fig. 1: MDP process: agent-environment interaction. [9]

time constants [12]. If an external signal µc is added to Eq.
2, this differential equation is modified to:

T1ẏ1 = −y1 +K1 [ω − (1 + µc)] (7)

such that the governor speed reference is modified from ωs to
ωs + µc. By adding this new signal, the governor’s actuation
can be manipulated according to a DRL agent. The block
diagram of this implementation is presented in Fig. 2. The new
signal will modify the frequency reference so the governor can
observe a bigger or smaller frequency deviation according to
the training conditions. As will be shown in the next sections,
this will result in an improvement in the governor’s response.

Fig. 2: Simplified IEESGO governor model with coordinating
signal µc.

III. DRL-PFC IMPLEMENTATION

This section addresses the implementation of the deep rein-
forcement learning supplementary primary frequency control
(DRL-PFC). The power grid is put into a DRL framework,
including the action space, observations, and reward function.

A. Primary frequency control in a DRL framework

1) State vector and observations: Ideally in a DRL frame-
work, all the states can be mapped. For example, consider the
well-known Atari game ”Pong”, which consists of two paddles
hitting one ball, trying to throw the ball outside the opponent
side. The state space is given by the entire set of combinations
formed by the position of the ball, its direction, and the
position of the two players paddles. These three features are
enough to observe the environment and provide the necessary
feedback to the agent so it can learn the necessary policy
to optimize the agent actuation [13]. However, this is an
example of a discrete problem, in which the state space is
countable. In a continuous problem, it will be impossible to
map all the states of the system. As a result, the most relevant
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observations must be selected to capture the different dynamics
of the environment. In the frequency regulation problem,
the observation must capture those features associated with
the primary frequency regulation problem, i.e., the frequency
nadir, the ROCOF, and the post-disturbance frequency. In this
work, the frequency ω and ROCOF ω̇ at SGs buses are used
as observations. Then, consider a system with N SGs, the
observations vector at time t is defined by:

Ωt = [ωt,1, ωt,2, ..., ωt,N ] (8)

Ω̇t = [ω̇t,1, ω̇t,2, ..., ω̇t,N ] (9)

st = Ωt ∪ Ω̇t (10)

2) Action space: The agent action is formed by all the
supplementary signals among all the implicated governors in
the supplementary control, such that the at vector is given by
Eq. 11,

at = [µt,1, µt,2, µt,c, ..., µt,M ] (11)

where µt,c is the governor frequency modification at time t for
generator c, and M is the total number of SGs participating in
the supplementary control. By placing hard limits on the action
space, the agent can quickly learn to take actions that will
improve the system without risking instabilities or collapse.
In this work, the action is limited to the range [-0.1, 0.3] as
the system remained stable under consistent application of the
extremes, and appropriate values within this range resulted in
considerable improvements to the primary frequency response.

3) Reward function: The reward function is an engineered
function that, given certain observations (not necessarily the
same from section III-A1), will provide the agent with the
feedback of taking at at state st. This feedback quantifies
the action taken such that the sum of the discounted rewards
can be used to obtain the optimal policy π∗. This can be
seen as an incentive or a penalizing mechanism, that leads
the agent to take wiser decisions as the training progresses. In
terms of primary frequency control, the reward function should
consider the actual frequency, the ROCOF, the frequency
nadir, and the post-disturbance frequency. To make a practical
implementation, the post-disturbance frequency is assumed to
be known and is computed through simulations considering a
stable scenario. Future research will explore the estimation of
the post-disturbance frequency to consider it in the training
process.

For this problem, the reward function is given by,

rt =



−β1|ft − fs| − 1000(fs − ft)(ft < fs)
−1000(ft − f∗)(ft > f∗)
−β2|ROCOF | if t = Tf

−β3|ft − fs| − 1000(fs − ft)(ft < fs)
−1000(ft − f∗)(ft > f∗)
−β4|ROCOF | if t ̸= Tf

(12)
where ft is the frequency at time t, fs is the post-disturbance,
which is our target frequency for the primary frequency
control, f∗ is the nominal frequency, Tf is the final instant,

and all βi values are scalar weights. The reward is combined
with four terms: the first one represents the penalty induced
by the absolute difference between the current frequency and
the post-disturbance frequency; the second one represents the
penalty induced by the excessively low frequency; the third
one represents the penalty induced by the over-high frequency;
finally, the fourth term is a penalty given by the magnitude
of the ROCOF. Weights β1 and β2, which are respectively
associated with the magnitudes of the frequency difference and
ROCOF, are chosen to be bigger negative coefficients than β3

and β4. This ensures that the final frequency will be closer to
the target frequency.

B. Continuous action space DRL algorithms

Once the RL framework has been defined, the next step is to
select an adequate algorithm to solve this problem. This work
uses Deep Deterministic Policy Gradient (DDPG) and Twin
Delayed DDPG (TD3). The former has been the most popular
algorithm for learning in continuous action space, while the
latter is its improved version. These two algorithms are policy-
gradient-based methods with an actor-critic structure, in which
two main models participate: the actor and the critic; the
former is the policy network, which takes the optimal action
given a certain state; while the latter is the optimal state-action
value function (Q-function), which evaluates the quality of the
action taken by the policy/actor-network. This structure allows
the policy network to update its parameters under the guidance
of the critic network, while the critic network updates its
parameters by minimizing a loss function based on Bellman’s
optimality equation. Both models are formed by two DNNs,
the online and target networks. The target networks facilitate
the training process by making it more stable and avoiding
overfitting through the use of a replay buffer. TD3 uses three
traits that improve its performance with respect to DDPG:

• Clipped Double Q-learning: the algorithm uses two Q-
functions instead of one. Then uses the smallest of the
two to form the targets in the Bellman error loss function.

• Delayed Policy Updates: the algorithm updates the actor-
network less frequently than the Q-function.

• Noise regularization: the algorithm adds noise to the
target action. This reduces the high variance on the target
values when updating the critic.

For the sake of brevity, the pseudocodes, their implemen-
tation, and more details can be found in references [9], [14]
and [15].

C. Andes Gym

The final step is to implement the framework in a place
where the agent can be trained by interacting with the power
grid. RL algorithms are trained in simulation platforms, this
allows agents to interact with the environment without being
subjected to physical constraints or catastrophic events, e.g.
a wide area damping controller trained as an agent in a
real power grid could provoke instabilities leading the system
to a collapse. Thus, RL algorithms are not trained in real
environments. In this work, andes gym python library has
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Fig. 3: Andes gym architecture [4]

been used to train an agent as a centralized primary frequency
controller for the grid.

Figure 3 shows the architecture of andes gym, which will
be used to explain how the agent is trained. Three main
Python libraries are needed: andes which is a power system
simulator, stable baselines3 which contains the RL algo-
rithms, and andes gym which is the API that interconnects
the first two libraries —andes gym is built on top of gym
library from OpenAI—. Moreover, stable baselines3 can be
substituted for any RL algorithm, including other libraries or
self-implemented new algorithms.

andes gym is used to set the environment, the RL algo-
rithm, and its hyperparameters, as well as the condition of the
training process. The environment includes the power system
model, the selection of observation signals, the definition of
the action signal, the reward function, and the parameters to
be used in the nonlinear simulation by andes. Once this is
set, andes gym leads the nonlinear simulations performed by
andes at the same time that breaks it into action instances.
In each action instance, andes gym collects the observa-
tion from andes and feeds them, including the reward, to
the DRL algorithm in stable baselines3. Then the agent
sends the action information to andes gym such that the
control signal can be modified in andes. Once this has been
done, andes gym enables the next action instance, replicating
the same process. This process is performed during several
episodes until reaching convergence.

The next section presents the results of implementing the
DRL-PFC in a test system, wrapping up all the elements of
this section.

IV. CASE STUDY

The DRL-PFC is tested in a 14-bus, 5-machine system
[6]. The SGs are described by a GENROU model, each
one with an IEESGO turbine-governor model and an IEEE-
type EXST1 exciter. Also, all loads have been converted to
constant power model and all the IEESGO models have been
altered to include the agent action µc,t. Furthermore, the power
imbalance disturbance is achieved by a load change event of
0.1 p.u., applied on bus 4 at 0.1 seconds. The weights in the
reward function are set to β1−4 = [300, 30000, 50, 1000]. For
practical purposes, the post-disturbance frequency is assumed
to be known and is fixed at 59.68 Hz. Finally, considering
that generator 3 is the closest one to the disturbance and by
consequence the most sensitive to it, its frequency response is
used for the performance analysis shown in the results.

Three analyses are done in this section: the first compares
the behavior of the DDPG-based controller when different
observations are used in the reward function, the second shows
a sensitivity analysis of the DDPG-based controller while
modifying the learning start hyperparameter, and the third one
makes a comparison between DDPG and TD3 algorithms for
the primary frequency controller.

A. Frequency and ROCOF as observations in the reward

The frequency behavior of the system is evaluated in the
first few seconds after a disturbance. Three different cases are
compared: without DRL-PFC, with DRL-PFC using frequency
observations in the reward, and with DRL-PFC using fre-
quency and ROCOF observations in the reward. The first case
is the actual response of the system without the supplementary
controller. The second case uses β2=β4=0, in Eq.12, while the
third case uses βi as defined in the introduction of this section.

Figure 4 shows the frequency response of the system after
a disturbance. Note the larger nadir in the system when the
supplementary controller is not considered, while in the other
two cases, the magnitude of the nadir is reduced. This shows
that the agent successfully improves the frequency response of
the system by controlling the SGs participation in the primary
frequency response.

In addition, Fig. 4 shows that the frequency nadir is better
when only the frequency observation is included in the reward.
Fig. 5 presents the absolute value of the ROCOF, in which the
agent that considers both, frequency and ROCOF, succeeds in
reducing the ROCOF magnitude during the entire simulation.
When deciding which one has a better performance, it is
important to consider that even if the nadir is greatly improved,
subsequent swing in frequency can cause erroneous activation
of protections due to large changes in the frequency and
voltage drops. Accordingly, it might be better to have a
moderate improvement in the nadir while reducing the ROCOF
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Fig. 6: Frequency with different ls: a) full plot and b) partial
enlargement

at the same time. Therefore, the agent that includes both obser-
vations can be regarded as a trade-off between the performance
of the frequency nadir and ROCOF. This demonstrates that
having a better knowledge of the environment, through more
observations, provides more intelligence to the agent allowing
it to take better decisions.

B. Effects of learning starts

The parameter ”learning starts” ls, is used together with the
replay buffer to avoid overfitting and convergence problems in
the training process due to the strong correlation of sequential
states. This parameter refers to how many experiences are
necessary to take in the replay buffer before the model starts to
learn. In this subsection, the agent that includes both frequency
and ROCOF magnitudes as observations is evaluated under
different values of ls. The frequency and absolute ROCOF
with different ls are shown in Fig. 6 and Fig. 7, respectively.

As shown in Fig. 6 and Fig. 7, ls = 600, provides the
best performance in terms of frequency nadir, however, the
best performance in terms of ROCOF is obtained with ls =
200. It is necessary to find a good trade-off to improve the
performance of both parameters. This is a typical issue with
machine learning and deep reinforcement learning algorithms.
Although in general, these algorithms are able to enhance
any application, it is necessary to perform a trial-and-error
process to come up with the best set of hyperparameters.
Observing once again the results, one can arguably say that
the best performance is reached by setting ls = 600, however,
as in the case of different reward functions, the overall best
setting is ls = 200, as it shows the best trade-off between
frequency nadir and ROCOF. From the RL point of view and
for continuous action spaces, a vast experience is necessary
to avoid any erroneous direction in the initial stages of the
learning process, i.e. if the model starts learning after the first
step, it might be possible that this is a big outlier which would
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Fig. 7: Absolute ROCOF with different ls: a) full plot and b)
partial enlargement
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derail the initial training direction. To avoid this, the model
samples from the replay buffer after a certain number of steps;
this number is the value of ls.

C. DDPG vs TD3

In this section, the DRL-PFC is compared using DDPG and
TD3 algorithms. To make a fair comparison, both models are
set with the same hyperparameters.

The first comparison consists in running the training process
for 200 episodes of 30 action instances per episode. The idea
is to compare which frequency nadir stabilizes faster and to
which value. It is important to recall that a smaller frequency
nadir represents an smaller drop in the frequency of the power
grid, because of this, the agent will try to decrease the value of
the nadir. Fig. 8 shows the results of this test. TD3 is able to
reach an smaller frequency nadir with fewer training episodes
in comparison to DDPG. Moreover, the results are more stable
for TD3 than DDPG. As presented in TD3 documentation on
[7], this could be due to a common failure on DDPG where
the Q-function begins to dramatically overestimate Q-values,
leading to policy breaking because it exploits the errors in
the Q-function. This issue is addressed by TD3, by using
the double clipping trick. The second comparison consists
in observing the frequency behavior of the grid right after
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the disturbance. This can be seen in Fig.9. It is evident that
the best response is obtained using the TD3 agent. This not
only provides a better frequency nadir but also decreases
the ROCOF, avoiding larger overshoots. The softer response
between the three scenarios is provided by TD3 algorithm,
which makes it a better solution for these types of continuous
action problems. Next comparison is done by evaluating the
performance of each algorithm with different learning starts
values. Fig. 10.a shows the frequency nadir performance over
200 episodes by DDPG agent. When using ls under 300
steps, the results randomly become unstable. Moreover, when
observing the performance close to the 200 episodes, the
frequency nadir decays and oscillates even for ls values of 400
and 500 action instances. The most stable response is obtained
when using 600 action instances. Contrary to this, as shown in
Fig. 10.b, TD3 is more stable for any ls value. These results
are obvious since TD3 is a newer version of DDPG enhancing
the capacity of actor-critic methods for solving continuous
action problems. As a result, TD3 provides a better solution
for the coordinated action of all SGs in the power grid primary
frequency response.

V. CONCLUSION

This paper propose a supplementary frequency controller
using DRL for primary frequency regulation. The regulation
is done by implementing a supplementary signal in the gov-
ernor’s frequency reference. This modified reference is led
by an actor-critic agent, which is trained to adjust the signal
according to the states of the system. The results show a
reduction in the frequency nadir and ROCOF magnitudes,
improving the frequency response of the system after a distur-
bance. The paper highlights some of the challenges that DRL
algorithms face in the training process. The trial-and-error
characteristic can lead to suboptimal results that require expert
intervention for fine-tuning. This is demonstrated with the
modifications in the learning start hyperparameter in which a
quality comparison is needed to select its best value. However,
an appropriate selection of observation and reward functions
could lead to better results. Finally, this paper demonstrates
that the application of DRL in stability problems is an open
and rising field of study. Future research could explore the
generalization of the DRL-PFC to bigger systems and different
types of disturbances that can lead to the appearance of new
dynamics and the necessity of multi-agent deep reinforcement
learning controllers.
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